{"title":"计算探索寻找新的天然产物衍生的EZH2抑制剂,以推进抗癌治疗。","authors":"Sagar Singh Shyamal","doi":"10.1007/s11030-025-11128-3","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic regulation intricately governs cellular mechanisms, including proliferation, death, differentiation, and cell cycle orchestration. One such target, Enhancer of zeste homolog 2 (EZH2), is essential for epigenetic regulation. EZH2 trimethylates histone H3 lys27 (H3K27me3), inhibiting target gene transcription and promoting chromatin condensation, thereby initiating tumorigenesis, thus a potentially plausible target to disrupt cancer progression. In this virtual screening study, we utilized two large, open-source natural product libraries, NPASS and LOTUS, to search for potential natural product scaffolds capable of EZH2 inhibition. The merged library was filtered through increasingly rigorous criteria at each stage, including Medchem-based rule filters, 2D Tanimoto similarity, sequential rounds of docking, rescoring via ML-based functions, and binding pose visualization, funneling down to the most promising candidates for further pharmacokinetics and toxicological profiles. The best hits were analyzed for their binding stability through molecular dynamics simulation and their binding free energy estimations. Exploratory chemical analysis was conducted to understand the similarity of hits with known EZH2 chemical space. This comprehensive workflow identified one potential inhibitor, LTS0131784, which exhibited favorable pharmacokinetic toxicity profiling with binding stability and free energy better than the FDA-approved EZH2 inhibitor, Tazemetostat. Furthermore, the plausible binding mechanism was also elucidated by analyzing the per residue-free decomposition of the simulated trajectories, which indicated the involvement of the LTS0131784 with the key residues TYR:111, TRP:521, CYS:560, ASN:585, and SER:561.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational exploration in search for novel natural product-derived EZH2 inhibitors for advancing anti-cancer therapy.\",\"authors\":\"Sagar Singh Shyamal\",\"doi\":\"10.1007/s11030-025-11128-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic regulation intricately governs cellular mechanisms, including proliferation, death, differentiation, and cell cycle orchestration. One such target, Enhancer of zeste homolog 2 (EZH2), is essential for epigenetic regulation. EZH2 trimethylates histone H3 lys27 (H3K27me3), inhibiting target gene transcription and promoting chromatin condensation, thereby initiating tumorigenesis, thus a potentially plausible target to disrupt cancer progression. In this virtual screening study, we utilized two large, open-source natural product libraries, NPASS and LOTUS, to search for potential natural product scaffolds capable of EZH2 inhibition. The merged library was filtered through increasingly rigorous criteria at each stage, including Medchem-based rule filters, 2D Tanimoto similarity, sequential rounds of docking, rescoring via ML-based functions, and binding pose visualization, funneling down to the most promising candidates for further pharmacokinetics and toxicological profiles. The best hits were analyzed for their binding stability through molecular dynamics simulation and their binding free energy estimations. Exploratory chemical analysis was conducted to understand the similarity of hits with known EZH2 chemical space. This comprehensive workflow identified one potential inhibitor, LTS0131784, which exhibited favorable pharmacokinetic toxicity profiling with binding stability and free energy better than the FDA-approved EZH2 inhibitor, Tazemetostat. Furthermore, the plausible binding mechanism was also elucidated by analyzing the per residue-free decomposition of the simulated trajectories, which indicated the involvement of the LTS0131784 with the key residues TYR:111, TRP:521, CYS:560, ASN:585, and SER:561.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11128-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11128-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
表观遗传调控复杂地支配着细胞机制,包括增殖、死亡、分化和细胞周期编排。其中一个目标,即zeste同源物2增强子(Enhancer of zeste homolog 2, EZH2),对表观遗传调控至关重要。EZH2三甲基化组蛋白H3 lys27 (H3K27me3),抑制靶基因转录并促进染色质凝聚,从而启动肿瘤发生,因此可能是破坏癌症进展的潜在靶点。在这项虚拟筛选研究中,我们利用两个大型的开源天然产物库NPASS和LOTUS来寻找能够抑制EZH2的潜在天然产物支架。合并后的文库在每个阶段都通过越来越严格的标准进行筛选,包括基于medchem的规则过滤器、2D谷本相似性、连续对接、基于ml的功能评分和结合姿态可视化,最终筛选出最有希望的候选物,用于进一步的药代动力学和毒理学分析。通过分子动力学模拟和结合自由能估算,分析了最佳命中点的结合稳定性。进行探索性化学分析,了解命中与已知EZH2化学空间的相似性。该综合工作流程确定了一种潜在的抑制剂LTS0131784,其结合稳定性和自由能优于fda批准的EZH2抑制剂Tazemetostat,具有良好的药代动力学毒性分析。此外,通过分析模拟轨迹的无残基分解,揭示了LTS0131784与关键残基TYR:111、TRP:521、CYS:560、ASN:585和SER:561的结合机制。
Computational exploration in search for novel natural product-derived EZH2 inhibitors for advancing anti-cancer therapy.
Epigenetic regulation intricately governs cellular mechanisms, including proliferation, death, differentiation, and cell cycle orchestration. One such target, Enhancer of zeste homolog 2 (EZH2), is essential for epigenetic regulation. EZH2 trimethylates histone H3 lys27 (H3K27me3), inhibiting target gene transcription and promoting chromatin condensation, thereby initiating tumorigenesis, thus a potentially plausible target to disrupt cancer progression. In this virtual screening study, we utilized two large, open-source natural product libraries, NPASS and LOTUS, to search for potential natural product scaffolds capable of EZH2 inhibition. The merged library was filtered through increasingly rigorous criteria at each stage, including Medchem-based rule filters, 2D Tanimoto similarity, sequential rounds of docking, rescoring via ML-based functions, and binding pose visualization, funneling down to the most promising candidates for further pharmacokinetics and toxicological profiles. The best hits were analyzed for their binding stability through molecular dynamics simulation and their binding free energy estimations. Exploratory chemical analysis was conducted to understand the similarity of hits with known EZH2 chemical space. This comprehensive workflow identified one potential inhibitor, LTS0131784, which exhibited favorable pharmacokinetic toxicity profiling with binding stability and free energy better than the FDA-approved EZH2 inhibitor, Tazemetostat. Furthermore, the plausible binding mechanism was also elucidated by analyzing the per residue-free decomposition of the simulated trajectories, which indicated the involvement of the LTS0131784 with the key residues TYR:111, TRP:521, CYS:560, ASN:585, and SER:561.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;