基于缩放边界坐标的c1 $$ {C}^1 $$多边形样条元构造

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhen-Yi Liu, Chong-Jun Li
{"title":"基于缩放边界坐标的c1 $$ {C}^1 $$多边形样条元构造","authors":"Zhen-Yi Liu,&nbsp;Chong-Jun Li","doi":"10.1002/nme.7671","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We construct a new polygonal <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math> spline finite element method based on the scaled boundary coordinates to address the plate bending problems in the Kirchhoff-love formulation. The Bernstein interpolations are utilized in both radial and circumferential directions in the scaled boundary coordinates. Firstly, the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math> continuity conditions inside an S-domain and normal derivatives constraining conditions are imposed by a simple linear system on the S-net coefficients. Secondly, to satisfy the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math> connection between different polygonal elements, we construct the Hermite interpolation by equivalently transforming part of the S-net coefficients to proper boundary degrees of freedom, namely, three degrees of freedom at each vertex and a normal derivative at the midpoint of each edge. Moreover, we discuss the convergence analysis of the proposed element over convex meshes by finding the necessary and sufficient geometric conditions, where the corresponding unisolvency theorem is proved by studying the dimension of the spline space <span></span><math>\n <mrow>\n <msubsup>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>𝒯</mi>\n </mrow>\n <mrow>\n <mi>S</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow></math>. This proposed spline element base have explicit expressions, and the computation of the stiffness matrix can be greatly simplified by using the S-net coefficients. Some numerical tests verify the cubic polynomial completeness, the optimal 4th-order convergence rate, and the continuity of the derivatives. It also shows other good properties like superconvergence in the square mesh and insensitivity to the mesh distortion.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a \\n \\n \\n \\n \\n C\\n \\n \\n 1\\n \\n \\n \\n $$ {C}^1 $$\\n Polygonal Spline Element Based on the Scaled Boundary Coordinates\",\"authors\":\"Zhen-Yi Liu,&nbsp;Chong-Jun Li\",\"doi\":\"10.1002/nme.7671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We construct a new polygonal <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {C}^1 $$</annotation>\\n </semantics></math> spline finite element method based on the scaled boundary coordinates to address the plate bending problems in the Kirchhoff-love formulation. The Bernstein interpolations are utilized in both radial and circumferential directions in the scaled boundary coordinates. Firstly, the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {C}^1 $$</annotation>\\n </semantics></math> continuity conditions inside an S-domain and normal derivatives constraining conditions are imposed by a simple linear system on the S-net coefficients. Secondly, to satisfy the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {C}^1 $$</annotation>\\n </semantics></math> connection between different polygonal elements, we construct the Hermite interpolation by equivalently transforming part of the S-net coefficients to proper boundary degrees of freedom, namely, three degrees of freedom at each vertex and a normal derivative at the midpoint of each edge. Moreover, we discuss the convergence analysis of the proposed element over convex meshes by finding the necessary and sufficient geometric conditions, where the corresponding unisolvency theorem is proved by studying the dimension of the spline space <span></span><math>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mo>∗</mo>\\n </mrow>\\n </msubsup>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>𝒯</mi>\\n </mrow>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow></math>. This proposed spline element base have explicit expressions, and the computation of the stiffness matrix can be greatly simplified by using the S-net coefficients. Some numerical tests verify the cubic polynomial completeness, the optimal 4th-order convergence rate, and the continuity of the derivatives. It also shows other good properties like superconvergence in the square mesh and insensitivity to the mesh distortion.</p>\\n </div>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7671\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7671","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了一种新的基于边界坐标缩放的多边形c1 $$ {C}^1 $$样条有限元方法来解决Kirchhoff-love公式中的板弯曲问题。在标度边界坐标中,Bernstein插值在径向和周向均得到了应用。首先,通过简单的线性系统对s网系数施加c1 $$ {C}^1 $$ s域内的连续性条件和法向导数约束条件。其次,为满足不同多边形单元之间的c1 $$ {C}^1 $$连接,将部分s网系数等效转换为适当的边界自由度,构造Hermite插值,即:每个顶点有三个自由度,每个边的中点有一个法向导数。此外,我们通过寻找凸网格上的必要和充分几何条件讨论了所提单元的收敛性分析,其中通过研究样条空间s4的维数证明了相应的不相容定理。31、∗(∈)。该样条单元基具有明确的表达式,采用s网系数可大大简化刚度矩阵的计算。一些数值实验验证了三次多项式的完备性、最优四阶收敛速率和导数的连续性。它还显示了正方形网格的超收敛性和对网格畸变的不敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a C 1 $$ {C}^1 $$ Polygonal Spline Element Based on the Scaled Boundary Coordinates

We construct a new polygonal C 1 $$ {C}^1 $$ spline finite element method based on the scaled boundary coordinates to address the plate bending problems in the Kirchhoff-love formulation. The Bernstein interpolations are utilized in both radial and circumferential directions in the scaled boundary coordinates. Firstly, the C 1 $$ {C}^1 $$ continuity conditions inside an S-domain and normal derivatives constraining conditions are imposed by a simple linear system on the S-net coefficients. Secondly, to satisfy the C 1 $$ {C}^1 $$ connection between different polygonal elements, we construct the Hermite interpolation by equivalently transforming part of the S-net coefficients to proper boundary degrees of freedom, namely, three degrees of freedom at each vertex and a normal derivative at the midpoint of each edge. Moreover, we discuss the convergence analysis of the proposed element over convex meshes by finding the necessary and sufficient geometric conditions, where the corresponding unisolvency theorem is proved by studying the dimension of the spline space S 4 , 3 1 , ( 𝒯 S ) . This proposed spline element base have explicit expressions, and the computation of the stiffness matrix can be greatly simplified by using the S-net coefficients. Some numerical tests verify the cubic polynomial completeness, the optimal 4th-order convergence rate, and the continuity of the derivatives. It also shows other good properties like superconvergence in the square mesh and insensitivity to the mesh distortion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信