在WRF-Hydro国家水模型的概念-功能等效中测试土壤水分性能措施

IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Ryoko Araki, Fred L. Ogden, Hilary K. McMillan
{"title":"在WRF-Hydro国家水模型的概念-功能等效中测试土壤水分性能措施","authors":"Ryoko Araki,&nbsp;Fred L. Ogden,&nbsp;Hilary K. McMillan","doi":"10.1111/1752-1688.70002","DOIUrl":null,"url":null,"abstract":"<p>The Conceptual-Functional Equivalent (CFE) to the National Water Model (NWM) serves as a baseline rainfall-runoff model in the National Oceanic and Atmospheric Administration (NOAA)'s Next Generation National Water Model Framework (NextGen). The CFE model performs similarly to the earlier version of the NWM, allowing comparisons with new models introduced in future versions. In addition to streamflow, the NWM outputs other hydrologic variables including soil moisture. Soil moisture plays a key role in simulating seasonal hydrologic processes in process-based models; therefore, it is imperative to evaluate models against observed data. However, incorporating in situ observed soil moisture data, which is highly spatially variable, into the calibration process may compromise streamflow results. We investigate how model evaluation, including in situ soil moisture observations, affects CFE's ability to reproduce streamflow and soil moisture. We evaluated the CFE model on two experimental watersheds using both traditional and signature-based performance metrics for soil moisture. Results showed that including soil moisture data enhances the reproducibility of overall and seasonal soil moisture patterns without sacrificing the reproducibility of streamflow. Calibration against streamflow alone was insufficient to reproduce soil moisture patterns. We recommend including soil moisture metrics when available in the CFE model calibration to improve seasonal streamflow predictions.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70002","citationCount":"0","resultStr":"{\"title\":\"Testing Soil Moisture Performance Measures in the Conceptual-Functional Equivalent to the WRF-Hydro National Water Model\",\"authors\":\"Ryoko Araki,&nbsp;Fred L. Ogden,&nbsp;Hilary K. McMillan\",\"doi\":\"10.1111/1752-1688.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Conceptual-Functional Equivalent (CFE) to the National Water Model (NWM) serves as a baseline rainfall-runoff model in the National Oceanic and Atmospheric Administration (NOAA)'s Next Generation National Water Model Framework (NextGen). The CFE model performs similarly to the earlier version of the NWM, allowing comparisons with new models introduced in future versions. In addition to streamflow, the NWM outputs other hydrologic variables including soil moisture. Soil moisture plays a key role in simulating seasonal hydrologic processes in process-based models; therefore, it is imperative to evaluate models against observed data. However, incorporating in situ observed soil moisture data, which is highly spatially variable, into the calibration process may compromise streamflow results. We investigate how model evaluation, including in situ soil moisture observations, affects CFE's ability to reproduce streamflow and soil moisture. We evaluated the CFE model on two experimental watersheds using both traditional and signature-based performance metrics for soil moisture. Results showed that including soil moisture data enhances the reproducibility of overall and seasonal soil moisture patterns without sacrificing the reproducibility of streamflow. Calibration against streamflow alone was insufficient to reproduce soil moisture patterns. We recommend including soil moisture metrics when available in the CFE model calibration to improve seasonal streamflow predictions.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70002\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70002","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

国家水模型(NWM)的概念-功能等效(CFE)在国家海洋和大气管理局(NOAA)的下一代国家水模型框架(NextGen)中作为基线降雨-径流模型。CFE模型的性能与早期版本的NWM相似,允许与未来版本中引入的新模型进行比较。除了水流,NWM还输出其他水文变量,包括土壤湿度。在基于过程的模式中,土壤湿度在模拟季节水文过程中起着关键作用;因此,必须根据观测数据来评估模型。然而,在校准过程中纳入高度空间可变的原位观测土壤湿度数据可能会损害径流结果。我们研究了模型评估(包括原位土壤湿度观测)如何影响CFE重现水流和土壤湿度的能力。我们使用传统和基于特征的土壤湿度性能指标对两个实验流域的CFE模型进行了评估。结果表明,在不牺牲水流再现性的前提下,纳入土壤水分数据增强了整体和季节土壤水分模式的再现性。仅根据水流进行校准不足以重现土壤湿度模式。我们建议在CFE模型校准中包括土壤湿度指标,以改善季节性流量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Testing Soil Moisture Performance Measures in the Conceptual-Functional Equivalent to the WRF-Hydro National Water Model

Testing Soil Moisture Performance Measures in the Conceptual-Functional Equivalent to the WRF-Hydro National Water Model

The Conceptual-Functional Equivalent (CFE) to the National Water Model (NWM) serves as a baseline rainfall-runoff model in the National Oceanic and Atmospheric Administration (NOAA)'s Next Generation National Water Model Framework (NextGen). The CFE model performs similarly to the earlier version of the NWM, allowing comparisons with new models introduced in future versions. In addition to streamflow, the NWM outputs other hydrologic variables including soil moisture. Soil moisture plays a key role in simulating seasonal hydrologic processes in process-based models; therefore, it is imperative to evaluate models against observed data. However, incorporating in situ observed soil moisture data, which is highly spatially variable, into the calibration process may compromise streamflow results. We investigate how model evaluation, including in situ soil moisture observations, affects CFE's ability to reproduce streamflow and soil moisture. We evaluated the CFE model on two experimental watersheds using both traditional and signature-based performance metrics for soil moisture. Results showed that including soil moisture data enhances the reproducibility of overall and seasonal soil moisture patterns without sacrificing the reproducibility of streamflow. Calibration against streamflow alone was insufficient to reproduce soil moisture patterns. We recommend including soil moisture metrics when available in the CFE model calibration to improve seasonal streamflow predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The American Water Resources Association
Journal of The American Water Resources Association 环境科学-地球科学综合
CiteScore
4.10
自引率
12.50%
发文量
100
审稿时长
3 months
期刊介绍: JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy. JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信