加州圣克莱门特盆地和哥斯达黎加科科斯山脊孔隙水中硫和其他氧化还原敏感元素的微生物循环

IF 2.7 2区 地球科学 Q2 BIOLOGY
Geobiology Pub Date : 2025-02-19 DOI:10.1111/gbi.70013
Daniela Osorio-Rodriguez, Frank J. Pavia, Daniel R. Utter, Matthew Quinan, Kameko Landry, Maya Gomes, Nathan D. Dalleska, Victoria J. Orphan, William M. Berelson, Jess F. Adkins
{"title":"加州圣克莱门特盆地和哥斯达黎加科科斯山脊孔隙水中硫和其他氧化还原敏感元素的微生物循环","authors":"Daniela Osorio-Rodriguez,&nbsp;Frank J. Pavia,&nbsp;Daniel R. Utter,&nbsp;Matthew Quinan,&nbsp;Kameko Landry,&nbsp;Maya Gomes,&nbsp;Nathan D. Dalleska,&nbsp;Victoria J. Orphan,&nbsp;William M. Berelson,&nbsp;Jess F. Adkins","doi":"10.1111/gbi.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re-oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species. Quantifying these sulfur intermediates in porewaters is a critical first step towards achieving a more complete understanding of the oxidative sulfur cycle, yet this has been accomplished in very few studies, none of which include oligotrophic sedimentary environments in the open ocean. Here we present profiles of porewater sulfur intermediates from sediments underlying oligotrophic regions of the ocean, which encompass about 75% of the ocean's surface and are characterized by low nutrient levels and productivity. Aiming at addressing uncertainties about if and how sulfide produced by the degradation of scarce sedimentary organic matter plays a role in carbon fixation in the sediment, we determine depth profiles of redox-sensitive metals and sulfate isotope compositions and integrate these datasets with 16S rRNA microbial community composition data and solid-phase sulfur concentrations. We did not find significant correlations between sulfur species or trace metals and specific sulfur cycling taxa, which suggests that microorganisms in pelagic and oxic sediments may be generalists utilizing flexible metabolisms to oxidize organic matter through different electron acceptors.</p>\n </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial Cycling of Sulfur and Other Redox-Sensitive Elements in Porewaters of San Clemente Basin, California, and Cocos Ridge, Costa Rica\",\"authors\":\"Daniela Osorio-Rodriguez,&nbsp;Frank J. Pavia,&nbsp;Daniel R. Utter,&nbsp;Matthew Quinan,&nbsp;Kameko Landry,&nbsp;Maya Gomes,&nbsp;Nathan D. Dalleska,&nbsp;Victoria J. Orphan,&nbsp;William M. Berelson,&nbsp;Jess F. Adkins\",\"doi\":\"10.1111/gbi.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re-oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species. Quantifying these sulfur intermediates in porewaters is a critical first step towards achieving a more complete understanding of the oxidative sulfur cycle, yet this has been accomplished in very few studies, none of which include oligotrophic sedimentary environments in the open ocean. Here we present profiles of porewater sulfur intermediates from sediments underlying oligotrophic regions of the ocean, which encompass about 75% of the ocean's surface and are characterized by low nutrient levels and productivity. Aiming at addressing uncertainties about if and how sulfide produced by the degradation of scarce sedimentary organic matter plays a role in carbon fixation in the sediment, we determine depth profiles of redox-sensitive metals and sulfate isotope compositions and integrate these datasets with 16S rRNA microbial community composition data and solid-phase sulfur concentrations. We did not find significant correlations between sulfur species or trace metals and specific sulfur cycling taxa, which suggests that microorganisms in pelagic and oxic sediments may be generalists utilizing flexible metabolisms to oxidize organic matter through different electron acceptors.</p>\\n </div>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70013\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70013","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海洋沉积物中有机物的微生物循环依赖于基于有效性和能量产率的电子受体。由于一旦氧气耗尽,硫酸盐是最丰富的氧化剂,硫酸盐还原后产生的硫化物成为自养微生物的重要电子供体。硫化物通过多种代谢途径和具有可变氧化状态的中间体被再氧化的能力促使人们研究哪些物种被优先利用,以及决定还原硫物种命运的因素是什么。对孔隙水中的硫中间体进行量化是实现对氧化硫循环更全面了解的关键第一步,但这一研究仅在极少数研究中完成,其中没有一个研究包括开放海洋中的寡营养沉积环境。在这里,我们展示了来自海洋贫营养区沉积物的孔隙水硫中间体的剖面,这些沉积物约占海洋表面的75%,其特征是营养水平和生产力低。为了解决沉积物中稀有有机物降解产生的硫化物是否以及如何在沉积物中起固定碳作用的不确定性,我们确定了氧化还原敏感金属和硫酸盐同位素组成的深度剖面,并将这些数据集与16S rRNA微生物群落组成数据和固相硫浓度相结合。我们没有发现硫种类或痕量金属与特定硫循环分类群之间的显著相关性,这表明远洋和含氧沉积物中的微生物可能是通才,利用灵活的代谢通过不同的电子受体来氧化有机物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial Cycling of Sulfur and Other Redox-Sensitive Elements in Porewaters of San Clemente Basin, California, and Cocos Ridge, Costa Rica

The microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re-oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species. Quantifying these sulfur intermediates in porewaters is a critical first step towards achieving a more complete understanding of the oxidative sulfur cycle, yet this has been accomplished in very few studies, none of which include oligotrophic sedimentary environments in the open ocean. Here we present profiles of porewater sulfur intermediates from sediments underlying oligotrophic regions of the ocean, which encompass about 75% of the ocean's surface and are characterized by low nutrient levels and productivity. Aiming at addressing uncertainties about if and how sulfide produced by the degradation of scarce sedimentary organic matter plays a role in carbon fixation in the sediment, we determine depth profiles of redox-sensitive metals and sulfate isotope compositions and integrate these datasets with 16S rRNA microbial community composition data and solid-phase sulfur concentrations. We did not find significant correlations between sulfur species or trace metals and specific sulfur cycling taxa, which suggests that microorganisms in pelagic and oxic sediments may be generalists utilizing flexible metabolisms to oxidize organic matter through different electron acceptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信