{"title":"达格列净改善高脂肪饮食诱导的雌性小鼠认知障碍","authors":"Xiaolin Chen, Mingxia Fan, Zhuoni Xiao, Xiaoxing Xiong","doi":"10.1002/brb3.70361","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>High fat consumption is a known risk factor for the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been found to possess anti-inflammatory and neuroprotective properties. However, the cognitive effects and mechanisms of SGLT2is on female mice fed with a high-fat diet remain unknown.</p>\n </section>\n \n <section>\n \n <h3> Objective</h3>\n \n <p>This study aimed to investigate the impacts of dapagliflozin on metabolism, cognition, neuroinflammation, insulin resistance, and microglial activation in female mice fed a HFD.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Dapagliflozin (1 mg/kg) was administered to HFD-fed mice for 24 weeks. Body weight, glucose tolerance, and insulin resistance were assessed. Additionally, all mice were subjected to the Morris water maze (MWM) and one-trial Y-maze tests. The levels of metabolic hormones and cytokines were analyzed using ELISA kits. The levels of phosphorylated tau (p-tau) protein in the hippocampus were measured. Microglia, insulin receptors, NLRP3, and IL-1β in the hippocampus of mice were evaluated by immunofluorescence or immunohistochemical staining.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>As anticipated, dapagliflozin improved insulin resistance and glucose metabolism and reduced cognitive impairment in female mice fed with a HFD. In the hippocampus, dapagliflozin alleviated microglial activation yet did not reduce the secretion of inflammatory chemokines. Furthermore, it increased the expression of insulin receptor in the hippocampus of HFD-fed mice and decreased the expression of p-tau.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our results provide a foundation for the clinical application of SGLT2is as an adjuvant to slow down the progression of central degenerative diseases related to metabolic disorders, such as AD.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"15 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70361","citationCount":"0","resultStr":"{\"title\":\"Dapagliflozin Improves High-Fat Diet-Induced Cognitive Impairment in Female Mice\",\"authors\":\"Xiaolin Chen, Mingxia Fan, Zhuoni Xiao, Xiaoxing Xiong\",\"doi\":\"10.1002/brb3.70361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>High fat consumption is a known risk factor for the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been found to possess anti-inflammatory and neuroprotective properties. However, the cognitive effects and mechanisms of SGLT2is on female mice fed with a high-fat diet remain unknown.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>This study aimed to investigate the impacts of dapagliflozin on metabolism, cognition, neuroinflammation, insulin resistance, and microglial activation in female mice fed a HFD.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Dapagliflozin (1 mg/kg) was administered to HFD-fed mice for 24 weeks. Body weight, glucose tolerance, and insulin resistance were assessed. Additionally, all mice were subjected to the Morris water maze (MWM) and one-trial Y-maze tests. The levels of metabolic hormones and cytokines were analyzed using ELISA kits. The levels of phosphorylated tau (p-tau) protein in the hippocampus were measured. Microglia, insulin receptors, NLRP3, and IL-1β in the hippocampus of mice were evaluated by immunofluorescence or immunohistochemical staining.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>As anticipated, dapagliflozin improved insulin resistance and glucose metabolism and reduced cognitive impairment in female mice fed with a HFD. In the hippocampus, dapagliflozin alleviated microglial activation yet did not reduce the secretion of inflammatory chemokines. Furthermore, it increased the expression of insulin receptor in the hippocampus of HFD-fed mice and decreased the expression of p-tau.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Our results provide a foundation for the clinical application of SGLT2is as an adjuvant to slow down the progression of central degenerative diseases related to metabolic disorders, such as AD.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70361\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70361\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70361","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Dapagliflozin Improves High-Fat Diet-Induced Cognitive Impairment in Female Mice
Background
High fat consumption is a known risk factor for the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been found to possess anti-inflammatory and neuroprotective properties. However, the cognitive effects and mechanisms of SGLT2is on female mice fed with a high-fat diet remain unknown.
Objective
This study aimed to investigate the impacts of dapagliflozin on metabolism, cognition, neuroinflammation, insulin resistance, and microglial activation in female mice fed a HFD.
Methods
Dapagliflozin (1 mg/kg) was administered to HFD-fed mice for 24 weeks. Body weight, glucose tolerance, and insulin resistance were assessed. Additionally, all mice were subjected to the Morris water maze (MWM) and one-trial Y-maze tests. The levels of metabolic hormones and cytokines were analyzed using ELISA kits. The levels of phosphorylated tau (p-tau) protein in the hippocampus were measured. Microglia, insulin receptors, NLRP3, and IL-1β in the hippocampus of mice were evaluated by immunofluorescence or immunohistochemical staining.
Results
As anticipated, dapagliflozin improved insulin resistance and glucose metabolism and reduced cognitive impairment in female mice fed with a HFD. In the hippocampus, dapagliflozin alleviated microglial activation yet did not reduce the secretion of inflammatory chemokines. Furthermore, it increased the expression of insulin receptor in the hippocampus of HFD-fed mice and decreased the expression of p-tau.
Conclusions
Our results provide a foundation for the clinical application of SGLT2is as an adjuvant to slow down the progression of central degenerative diseases related to metabolic disorders, such as AD.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)