再生塑料颗粒的燃烧参数

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Courtney Devine, Natalia Flores-Quiroz, Richard Walls, Carlo Kuhn
{"title":"再生塑料颗粒的燃烧参数","authors":"Courtney Devine,&nbsp;Natalia Flores-Quiroz,&nbsp;Richard Walls,&nbsp;Carlo Kuhn","doi":"10.1002/fam.3248","DOIUrl":null,"url":null,"abstract":"<p>During the recycling process, waste plastic undergoes various processes that change its geometry. The thermal properties and fire behaviour of plastic in different geometries has not been widely studied. This paper aims to determine critical thermal properties of plastic pellets made of recycled plastic. For this paper, cone calorimeter tests of various volumes of recycled plastic pellets of low- and high-density polyethylene and polypropylene were conducted. During these tests, the heat release rate (HRR), mass loss rate and time-to-ignition were measured, thereafter the heat of combustion (HOC) was calculated. A calibration of suitable time-to-ignition equations is carried out. The average HRR is between 353 and 581 kW/m<sup>2</sup> with an external heat flux of 50 kW/m<sup>2</sup>. The measured time-to-ignition values ranged between 27 s at 50 kW/m<sup>2</sup> and just more than 90 s at 25 kW/m<sup>2</sup>. Values obtained analytically from the thermally thin time-to-ignition equations for these materials describe ignition well, which appears to be due to the particulate nature of the samples. The HOC (40–41 MJ/kg) shows good agreement with the HOC for virgin plastic found in literature. These properties can be used as a basis for material characterisation, and further testing will be done before using this as simulation inputs to determine how bulk stored plastic pellets will behave in the event of a fire.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"127-137"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3248","citationCount":"0","resultStr":"{\"title\":\"Fire parameters of recycled plastic pellets\",\"authors\":\"Courtney Devine,&nbsp;Natalia Flores-Quiroz,&nbsp;Richard Walls,&nbsp;Carlo Kuhn\",\"doi\":\"10.1002/fam.3248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the recycling process, waste plastic undergoes various processes that change its geometry. The thermal properties and fire behaviour of plastic in different geometries has not been widely studied. This paper aims to determine critical thermal properties of plastic pellets made of recycled plastic. For this paper, cone calorimeter tests of various volumes of recycled plastic pellets of low- and high-density polyethylene and polypropylene were conducted. During these tests, the heat release rate (HRR), mass loss rate and time-to-ignition were measured, thereafter the heat of combustion (HOC) was calculated. A calibration of suitable time-to-ignition equations is carried out. The average HRR is between 353 and 581 kW/m<sup>2</sup> with an external heat flux of 50 kW/m<sup>2</sup>. The measured time-to-ignition values ranged between 27 s at 50 kW/m<sup>2</sup> and just more than 90 s at 25 kW/m<sup>2</sup>. Values obtained analytically from the thermally thin time-to-ignition equations for these materials describe ignition well, which appears to be due to the particulate nature of the samples. The HOC (40–41 MJ/kg) shows good agreement with the HOC for virgin plastic found in literature. These properties can be used as a basis for material characterisation, and further testing will be done before using this as simulation inputs to determine how bulk stored plastic pellets will behave in the event of a fire.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"49 2\",\"pages\":\"127-137\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3248\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3248\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3248","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在回收过程中,废塑料经历了改变其几何形状的各种过程。不同几何形状的塑料的热性能和防火性能尚未得到广泛的研究。本文旨在确定由再生塑料制成的塑料颗粒的临界热性能。本文对不同体积的低、高密度聚乙烯和聚丙烯再生塑料球团进行了锥形量热试验。在这些试验中,测量了热释放率(HRR)、质量损失率和点火时间,然后计算了燃烧热(HOC)。对合适的点火时间方程进行了标定。平均HRR在353 ~ 581 kW/m2之间,外热通量为50 kW/m2。测量到的点火时间值在50kw /m2时为27s,在25kw /m2时为90s以上。从这些材料的热薄点火时间方程中解析得到的值很好地描述了点火,这似乎是由于样品的颗粒性质。HOC (40-41 MJ/kg)与文献中发现的原生塑料的HOC一致。这些特性可以作为材料特性的基础,在将其用作模拟输入之前,将进行进一步的测试,以确定散装储存的塑料颗粒在发生火灾时的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fire parameters of recycled plastic pellets

Fire parameters of recycled plastic pellets

During the recycling process, waste plastic undergoes various processes that change its geometry. The thermal properties and fire behaviour of plastic in different geometries has not been widely studied. This paper aims to determine critical thermal properties of plastic pellets made of recycled plastic. For this paper, cone calorimeter tests of various volumes of recycled plastic pellets of low- and high-density polyethylene and polypropylene were conducted. During these tests, the heat release rate (HRR), mass loss rate and time-to-ignition were measured, thereafter the heat of combustion (HOC) was calculated. A calibration of suitable time-to-ignition equations is carried out. The average HRR is between 353 and 581 kW/m2 with an external heat flux of 50 kW/m2. The measured time-to-ignition values ranged between 27 s at 50 kW/m2 and just more than 90 s at 25 kW/m2. Values obtained analytically from the thermally thin time-to-ignition equations for these materials describe ignition well, which appears to be due to the particulate nature of the samples. The HOC (40–41 MJ/kg) shows good agreement with the HOC for virgin plastic found in literature. These properties can be used as a basis for material characterisation, and further testing will be done before using this as simulation inputs to determine how bulk stored plastic pellets will behave in the event of a fire.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信