抑制低频振荡的电池储能系统控制器优化设计

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Saeed Hasanvand, Hossein Sobhani, Mohammad Mardaneh, Mohammad-Hassan Khooban
{"title":"抑制低频振荡的电池储能系统控制器优化设计","authors":"Saeed Hasanvand,&nbsp;Hossein Sobhani,&nbsp;Mohammad Mardaneh,&nbsp;Mohammad-Hassan Khooban","doi":"10.1155/er/2248945","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Battery energy storage systems (BESSs) have recently been utilized in power systems for various purposes. Integrating these devices into power systems can enhance the damping capability of subsynchronous oscillations. The interaction between the control modes of the BESS and synchronous machines, as well as the control parameters of the BESS, reduces subsynchronous oscillations. To damp oscillations and improve dynamic stability, this work develops a linear model of a power system integrated with a BESS to investigate small-signal stability. The gain tuning of the BESS controller is formulated as an optimization problem and is solved using a fuzzy-based algorithm. The efficacy of the proposed method is evaluated under various operating conditions. Furthermore, the proposed method is compared with a power system stabilizer (PSS) damping controller, and the results demonstrate the superiority of the BESS damping method in mitigating subsynchronous oscillations and enhancing the dynamic stability of power systems. Lastly, eigenvalue analysis is employed to determine the permissible ranges of BESS parameters for stable power system operation.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/2248945","citationCount":"0","resultStr":"{\"title\":\"Optimal Design of Battery Energy Storage System Controllers for Damping Low-Frequency Oscillations\",\"authors\":\"Saeed Hasanvand,&nbsp;Hossein Sobhani,&nbsp;Mohammad Mardaneh,&nbsp;Mohammad-Hassan Khooban\",\"doi\":\"10.1155/er/2248945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Battery energy storage systems (BESSs) have recently been utilized in power systems for various purposes. Integrating these devices into power systems can enhance the damping capability of subsynchronous oscillations. The interaction between the control modes of the BESS and synchronous machines, as well as the control parameters of the BESS, reduces subsynchronous oscillations. To damp oscillations and improve dynamic stability, this work develops a linear model of a power system integrated with a BESS to investigate small-signal stability. The gain tuning of the BESS controller is formulated as an optimization problem and is solved using a fuzzy-based algorithm. The efficacy of the proposed method is evaluated under various operating conditions. Furthermore, the proposed method is compared with a power system stabilizer (PSS) damping controller, and the results demonstrate the superiority of the BESS damping method in mitigating subsynchronous oscillations and enhancing the dynamic stability of power systems. Lastly, eigenvalue analysis is employed to determine the permissible ranges of BESS parameters for stable power system operation.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/2248945\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/2248945\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/2248945","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

电池储能系统(bess)近年来在电力系统中得到了广泛的应用。将这些器件集成到电力系统中可以增强次同步振荡的阻尼能力。BESS的控制模式和同步电机之间的相互作用,以及BESS的控制参数,减少了次同步振荡。为了抑制振荡和提高动态稳定性,本工作开发了一个与BESS集成的电力系统的线性模型来研究小信号稳定性。BESS控制器的增益整定是一个优化问题,并采用基于模糊的算法进行求解。在各种操作条件下对所提方法的有效性进行了评价。并将该方法与电力系统稳定器(PSS)阻尼控制器进行了比较,结果表明BESS阻尼方法在缓解次同步振荡和提高电力系统动态稳定性方面具有优势。最后,采用特征值分析方法确定了BESS参数在电力系统稳定运行时的允许范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal Design of Battery Energy Storage System Controllers for Damping Low-Frequency Oscillations

Optimal Design of Battery Energy Storage System Controllers for Damping Low-Frequency Oscillations

Battery energy storage systems (BESSs) have recently been utilized in power systems for various purposes. Integrating these devices into power systems can enhance the damping capability of subsynchronous oscillations. The interaction between the control modes of the BESS and synchronous machines, as well as the control parameters of the BESS, reduces subsynchronous oscillations. To damp oscillations and improve dynamic stability, this work develops a linear model of a power system integrated with a BESS to investigate small-signal stability. The gain tuning of the BESS controller is formulated as an optimization problem and is solved using a fuzzy-based algorithm. The efficacy of the proposed method is evaluated under various operating conditions. Furthermore, the proposed method is compared with a power system stabilizer (PSS) damping controller, and the results demonstrate the superiority of the BESS damping method in mitigating subsynchronous oscillations and enhancing the dynamic stability of power systems. Lastly, eigenvalue analysis is employed to determine the permissible ranges of BESS parameters for stable power system operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信