Yao Liu, Jinzheng Chen, Yiling Miao, Kaimin Zhang, Faxu Lin, Huahua Huang, Lina Zhang, Zhan Yang, Yi Zhang, Zhenguo Chi, Zhiyong Yang
{"title":"用于在现有聚合物基材料中实现超高效持久磷光的铯离子双功能添加剂","authors":"Yao Liu, Jinzheng Chen, Yiling Miao, Kaimin Zhang, Faxu Lin, Huahua Huang, Lina Zhang, Zhan Yang, Yi Zhang, Zhenguo Chi, Zhiyong Yang","doi":"10.1007/s11426-024-2247-4","DOIUrl":null,"url":null,"abstract":"<div><p>Despite great achievements obtained for polymer-based room-temperature phosphorescence (RTP) materials, the limited efficiencies of persistent RTP still hinder their development. Herein, a simple and universal strategy of using the dual-functional additive of Cs<sup>+</sup> was presented, which could simultaneously enhance the efficiency (<i>Φ</i><sub>p</sub>) and maintain the long lifetime (<i>τ</i><sub>p</sub>) of RTP in existing polymer-based systems with various phosphors and polymers. Among them, the commercial emitter (TpB)-doped polyvinyl alcohol (PVA)/Cs<sub>2</sub>CO<sub>3</sub> system possessed an extremely high <i>Φ</i><sub>p</sub> up to 75.5% and still maintained a long <i>τ</i><sub>p</sub> of 2.13 s, by introducing the heavy-atom effect and an extra network of ionic bonding through the Cs<sup>+</sup> additive. Additionally, the temperature resistance of RTP in TpB@PVA/Cs<sup>+</sup> film could also be improved to 85 °C. More satisfactorily, the efficiency of Förster resonance energy transfer (FRET) from RTP to near-infrared (NIR) was also remarkably enhanced in the multi-component systems. This work provides a simple and universal strategy for developing polymer systems with high RTP performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 2","pages":"754 - 762"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11426-024-2247-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Dual-functional additive of cesium ion for achieving ultrahigh efficiency of persistent phosphorescence in existing polymer-based materials\",\"authors\":\"Yao Liu, Jinzheng Chen, Yiling Miao, Kaimin Zhang, Faxu Lin, Huahua Huang, Lina Zhang, Zhan Yang, Yi Zhang, Zhenguo Chi, Zhiyong Yang\",\"doi\":\"10.1007/s11426-024-2247-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite great achievements obtained for polymer-based room-temperature phosphorescence (RTP) materials, the limited efficiencies of persistent RTP still hinder their development. Herein, a simple and universal strategy of using the dual-functional additive of Cs<sup>+</sup> was presented, which could simultaneously enhance the efficiency (<i>Φ</i><sub>p</sub>) and maintain the long lifetime (<i>τ</i><sub>p</sub>) of RTP in existing polymer-based systems with various phosphors and polymers. Among them, the commercial emitter (TpB)-doped polyvinyl alcohol (PVA)/Cs<sub>2</sub>CO<sub>3</sub> system possessed an extremely high <i>Φ</i><sub>p</sub> up to 75.5% and still maintained a long <i>τ</i><sub>p</sub> of 2.13 s, by introducing the heavy-atom effect and an extra network of ionic bonding through the Cs<sup>+</sup> additive. Additionally, the temperature resistance of RTP in TpB@PVA/Cs<sup>+</sup> film could also be improved to 85 °C. More satisfactorily, the efficiency of Förster resonance energy transfer (FRET) from RTP to near-infrared (NIR) was also remarkably enhanced in the multi-component systems. This work provides a simple and universal strategy for developing polymer systems with high RTP performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"68 2\",\"pages\":\"754 - 762\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11426-024-2247-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-024-2247-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2247-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-functional additive of cesium ion for achieving ultrahigh efficiency of persistent phosphorescence in existing polymer-based materials
Despite great achievements obtained for polymer-based room-temperature phosphorescence (RTP) materials, the limited efficiencies of persistent RTP still hinder their development. Herein, a simple and universal strategy of using the dual-functional additive of Cs+ was presented, which could simultaneously enhance the efficiency (Φp) and maintain the long lifetime (τp) of RTP in existing polymer-based systems with various phosphors and polymers. Among them, the commercial emitter (TpB)-doped polyvinyl alcohol (PVA)/Cs2CO3 system possessed an extremely high Φp up to 75.5% and still maintained a long τp of 2.13 s, by introducing the heavy-atom effect and an extra network of ionic bonding through the Cs+ additive. Additionally, the temperature resistance of RTP in TpB@PVA/Cs+ film could also be improved to 85 °C. More satisfactorily, the efficiency of Förster resonance energy transfer (FRET) from RTP to near-infrared (NIR) was also remarkably enhanced in the multi-component systems. This work provides a simple and universal strategy for developing polymer systems with high RTP performance.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.