超声反射法压电强化薄膜的k²₃估计

Yohkoh Shimano;Motoshi Suzuki;Takahiko Yanagitani
{"title":"超声反射法压电强化薄膜的k²₃估计","authors":"Yohkoh Shimano;Motoshi Suzuki;Takahiko Yanagitani","doi":"10.1109/OJUFFC.2025.3537962","DOIUrl":null,"url":null,"abstract":"A method for estimating intrinsic electromechanical coupling coefficient <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> of piezoelectric thin films using piezoelectrically stiffened acoustic velocity <inline-formula> <tex-math>${V}^{\\text {D}}$ </tex-math></inline-formula> and unstiffened acoustic velocity <inline-formula> <tex-math>${V}^{\\text {E}}$ </tex-math></inline-formula> was proposed. <inline-formula> <tex-math>${V}^{\\text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{\\text {E}}$ </tex-math></inline-formula> velocities of thin films in the sub-GHz range were estimated by ultrasonic reflectometry. Directly depositing a film specimen on the backside of the ultrasonic delay line eliminates the need for a coupler layer and avoids acoustic attenuation in the layer. The <inline-formula> <tex-math>${V}^{\\text {D}}$ </tex-math></inline-formula> velocity can be estimated from the phase differences of the echoes: before and after the film specimen is deposited. In contrast, <inline-formula> <tex-math>${V}^{\\text {E}}$ </tex-math></inline-formula> velocity can be estimated from the phase difference when the film specimen is under the open circuit and the short circuit. The intrinsic <inline-formula> <tex-math>${k}_{{33}}^{{2}}{}$ </tex-math></inline-formula> can be obtained from the relationship of <inline-formula> <tex-math>${k}_{{33}}^{{2}}~\\text {=}$ </tex-math></inline-formula> 1 – (<inline-formula> <tex-math>${V}^{\\text {E}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${V}^{\\text {D}})^{{2}}$ </tex-math></inline-formula>. For the Sc0.4Al0.6N thin film specimen, <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> was determined to be 11.6% from <inline-formula> <tex-math>${V}^{\\text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{\\text {E}}$ </tex-math></inline-formula> of 8400 m/s and 7900 m/s, respectively. For the ZnO thin film specimen, <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> was estimated to be 4.7% from <inline-formula> <tex-math>${V}^{\\text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{\\text {E}}$ </tex-math></inline-formula> of 6250 m/s and 6100 m/s, respectively. These values are in good agreement with previously reported results.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"6-10"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869444","citationCount":"0","resultStr":"{\"title\":\"k²₃₃Estimation of Thin Films via Piezoelectric Stiffening Using Ultrasonic Reflectometry\",\"authors\":\"Yohkoh Shimano;Motoshi Suzuki;Takahiko Yanagitani\",\"doi\":\"10.1109/OJUFFC.2025.3537962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for estimating intrinsic electromechanical coupling coefficient <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> of piezoelectric thin films using piezoelectrically stiffened acoustic velocity <inline-formula> <tex-math>${V}^{\\\\text {D}}$ </tex-math></inline-formula> and unstiffened acoustic velocity <inline-formula> <tex-math>${V}^{\\\\text {E}}$ </tex-math></inline-formula> was proposed. <inline-formula> <tex-math>${V}^{\\\\text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{\\\\text {E}}$ </tex-math></inline-formula> velocities of thin films in the sub-GHz range were estimated by ultrasonic reflectometry. Directly depositing a film specimen on the backside of the ultrasonic delay line eliminates the need for a coupler layer and avoids acoustic attenuation in the layer. The <inline-formula> <tex-math>${V}^{\\\\text {D}}$ </tex-math></inline-formula> velocity can be estimated from the phase differences of the echoes: before and after the film specimen is deposited. In contrast, <inline-formula> <tex-math>${V}^{\\\\text {E}}$ </tex-math></inline-formula> velocity can be estimated from the phase difference when the film specimen is under the open circuit and the short circuit. The intrinsic <inline-formula> <tex-math>${k}_{{33}}^{{2}}{}$ </tex-math></inline-formula> can be obtained from the relationship of <inline-formula> <tex-math>${k}_{{33}}^{{2}}~\\\\text {=}$ </tex-math></inline-formula> 1 – (<inline-formula> <tex-math>${V}^{\\\\text {E}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${V}^{\\\\text {D}})^{{2}}$ </tex-math></inline-formula>. For the Sc0.4Al0.6N thin film specimen, <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> was determined to be 11.6% from <inline-formula> <tex-math>${V}^{\\\\text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{\\\\text {E}}$ </tex-math></inline-formula> of 8400 m/s and 7900 m/s, respectively. For the ZnO thin film specimen, <inline-formula> <tex-math>${k}_{{33}}^{{2}}$ </tex-math></inline-formula> was estimated to be 4.7% from <inline-formula> <tex-math>${V}^{\\\\text {D}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${V}^{\\\\text {E}}$ </tex-math></inline-formula> of 6250 m/s and 6100 m/s, respectively. These values are in good agreement with previously reported results.\",\"PeriodicalId\":73301,\"journal\":{\"name\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"5 \",\"pages\":\"6-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869444\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10869444/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10869444/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用压电加劲声速${V}^{\text {D}}$和非加劲声速${V}^{\text {E}}$估计压电薄膜固有机电耦合系数${k}_{{33}}}^{{2}}$的方法。用超声反射法估计了薄膜在sub-GHz范围内的速度${V}^{\text {D}}$和${V}^{\text {E}}$。在超声波延迟线的背面直接沉积薄膜试样,消除了对耦合器层的需要,并避免了层中的声衰减。${V}^{\text {D}}$速度可以由沉积薄膜试样前后回波的相位差来估计。而${V}^{\text {E}}$速度则可以通过薄膜试样在开路和短路状态下的相位差来估算。内在$ {k} _{{33}} ^{{2}}{}的关系可以获得美元{k} _{{33}} ^{{2}} ~ \文本{=}$ 1 - ($ {V} ^{\文本{E}} $ / $ {V} ^{文本\ D{}}) ^{{2}} $。对于Sc0.4Al0.6N薄膜试样,从8400 m/s和7900 m/s的${V}^{\text {D}}$和${V}^{\text {E}}$中确定${k}_{{33}}}^{{2}}$为11.6%。对于ZnO薄膜试样,${k}_{{33}}^{{2}}$估计为${V}^{\text {D}}$和${V}^{\text {E}}$分别为6250 m/s和6100 m/s的4.7%。这些值与先前报道的结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k²₃₃Estimation of Thin Films via Piezoelectric Stiffening Using Ultrasonic Reflectometry
A method for estimating intrinsic electromechanical coupling coefficient ${k}_{{33}}^{{2}}$ of piezoelectric thin films using piezoelectrically stiffened acoustic velocity ${V}^{\text {D}}$ and unstiffened acoustic velocity ${V}^{\text {E}}$ was proposed. ${V}^{\text {D}}$ and ${V}^{\text {E}}$ velocities of thin films in the sub-GHz range were estimated by ultrasonic reflectometry. Directly depositing a film specimen on the backside of the ultrasonic delay line eliminates the need for a coupler layer and avoids acoustic attenuation in the layer. The ${V}^{\text {D}}$ velocity can be estimated from the phase differences of the echoes: before and after the film specimen is deposited. In contrast, ${V}^{\text {E}}$ velocity can be estimated from the phase difference when the film specimen is under the open circuit and the short circuit. The intrinsic ${k}_{{33}}^{{2}}{}$ can be obtained from the relationship of ${k}_{{33}}^{{2}}~\text {=}$ 1 – ( ${V}^{\text {E}}$ / ${V}^{\text {D}})^{{2}}$ . For the Sc0.4Al0.6N thin film specimen, ${k}_{{33}}^{{2}}$ was determined to be 11.6% from ${V}^{\text {D}}$ and ${V}^{\text {E}}$ of 8400 m/s and 7900 m/s, respectively. For the ZnO thin film specimen, ${k}_{{33}}^{{2}}$ was estimated to be 4.7% from ${V}^{\text {D}}$ and ${V}^{\text {E}}$ of 6250 m/s and 6100 m/s, respectively. These values are in good agreement with previously reported results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信