{"title":"单元的Eilenberg-Moore范畴的微分扭转理论","authors":"Divya Ahuja, Surjeet Kour","doi":"10.1016/j.jpaa.2025.107910","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be a Grothendieck category and <em>U</em> be a monad on <span><math><mi>C</mi></math></span> that is exact and preserves colimits. In this article, we prove that every hereditary torsion theory on the Eilenberg-Moore category of modules over a monad <em>U</em> is differential. Furthermore, if <span><math><mi>δ</mi><mo>:</mo><mi>U</mi><mo>⟶</mo><mi>U</mi></math></span> denotes a derivation on a monad <em>U</em>, then we show that every <em>δ</em>-derivation on a <em>U</em>-module <em>M</em> extends uniquely to a <em>δ</em>-derivation on the module of quotients of <em>M</em>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 3","pages":"Article 107910"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential torsion theories on Eilenberg-Moore categories of monads\",\"authors\":\"Divya Ahuja, Surjeet Kour\",\"doi\":\"10.1016/j.jpaa.2025.107910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>C</mi></math></span> be a Grothendieck category and <em>U</em> be a monad on <span><math><mi>C</mi></math></span> that is exact and preserves colimits. In this article, we prove that every hereditary torsion theory on the Eilenberg-Moore category of modules over a monad <em>U</em> is differential. Furthermore, if <span><math><mi>δ</mi><mo>:</mo><mi>U</mi><mo>⟶</mo><mi>U</mi></math></span> denotes a derivation on a monad <em>U</em>, then we show that every <em>δ</em>-derivation on a <em>U</em>-module <em>M</em> extends uniquely to a <em>δ</em>-derivation on the module of quotients of <em>M</em>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 3\",\"pages\":\"Article 107910\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000490\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000490","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Differential torsion theories on Eilenberg-Moore categories of monads
Let be a Grothendieck category and U be a monad on that is exact and preserves colimits. In this article, we prove that every hereditary torsion theory on the Eilenberg-Moore category of modules over a monad U is differential. Furthermore, if denotes a derivation on a monad U, then we show that every δ-derivation on a U-module M extends uniquely to a δ-derivation on the module of quotients of M.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.