{"title":"基于DFT的氮化钪单层有害气体(NH3, AsH3, BF3, BCl3)传感器件应用研究","authors":"Pratham Gowtham , Mandar Jatkar","doi":"10.1016/j.micrna.2025.208100","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the structural stability and electronic properties of zigzag Scandium Nitride Nanoribbon (ZScNNR) configurations, with a particular emphasis on their application in detecting toxic gases such as NH<sub>3</sub>, AsH<sub>3</sub>, BF<sub>3</sub>, and BCl<sub>3</sub>. Our comprehensive analysis reveals that all studied ZScNNR gas configurations exhibit semiconductor-like behavior except BCl<sub>3</sub>, as evidenced by their calculated band structures and density of states (DOS). Among these configurations, the Bare-ZScNNR-6 configuration emerges as the most thermodynamically stable. Furthermore, the configurations involving AsH<sub>3</sub> at width 2 are energetically favorable (-2.57eV). Importantly, the study highlights the remarkable selectivity of AsH<sub>3</sub> on BF<sub>3</sub> i.e 2.5. It shows their potential as effective nanosensors. In particular, the BCl<sub>3</sub> and NH<sub>3</sub> ZScNNR-6 configurations demonstrate an impressive response time of just 7.7 microseconds, establishing them as highly efficient sensor options. These findings underscore the significant potential of ZScNNR-based nanosensors for rapid and selective toxic gas detection, paving the way for their integration into advanced nanoscale sensing devices.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"201 ","pages":"Article 208100"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT based study to sense harmful gases (NH3, AsH3, BF3, BCl3) using Scandium Nitride monolayer for sensing device applications\",\"authors\":\"Pratham Gowtham , Mandar Jatkar\",\"doi\":\"10.1016/j.micrna.2025.208100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the structural stability and electronic properties of zigzag Scandium Nitride Nanoribbon (ZScNNR) configurations, with a particular emphasis on their application in detecting toxic gases such as NH<sub>3</sub>, AsH<sub>3</sub>, BF<sub>3</sub>, and BCl<sub>3</sub>. Our comprehensive analysis reveals that all studied ZScNNR gas configurations exhibit semiconductor-like behavior except BCl<sub>3</sub>, as evidenced by their calculated band structures and density of states (DOS). Among these configurations, the Bare-ZScNNR-6 configuration emerges as the most thermodynamically stable. Furthermore, the configurations involving AsH<sub>3</sub> at width 2 are energetically favorable (-2.57eV). Importantly, the study highlights the remarkable selectivity of AsH<sub>3</sub> on BF<sub>3</sub> i.e 2.5. It shows their potential as effective nanosensors. In particular, the BCl<sub>3</sub> and NH<sub>3</sub> ZScNNR-6 configurations demonstrate an impressive response time of just 7.7 microseconds, establishing them as highly efficient sensor options. These findings underscore the significant potential of ZScNNR-based nanosensors for rapid and selective toxic gas detection, paving the way for their integration into advanced nanoscale sensing devices.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"201 \",\"pages\":\"Article 208100\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
DFT based study to sense harmful gases (NH3, AsH3, BF3, BCl3) using Scandium Nitride monolayer for sensing device applications
In this study, we investigate the structural stability and electronic properties of zigzag Scandium Nitride Nanoribbon (ZScNNR) configurations, with a particular emphasis on their application in detecting toxic gases such as NH3, AsH3, BF3, and BCl3. Our comprehensive analysis reveals that all studied ZScNNR gas configurations exhibit semiconductor-like behavior except BCl3, as evidenced by their calculated band structures and density of states (DOS). Among these configurations, the Bare-ZScNNR-6 configuration emerges as the most thermodynamically stable. Furthermore, the configurations involving AsH3 at width 2 are energetically favorable (-2.57eV). Importantly, the study highlights the remarkable selectivity of AsH3 on BF3 i.e 2.5. It shows their potential as effective nanosensors. In particular, the BCl3 and NH3 ZScNNR-6 configurations demonstrate an impressive response time of just 7.7 microseconds, establishing them as highly efficient sensor options. These findings underscore the significant potential of ZScNNR-based nanosensors for rapid and selective toxic gas detection, paving the way for their integration into advanced nanoscale sensing devices.