基于DFT的氮化钪单层有害气体(NH3, AsH3, BF3, BCl3)传感器件应用研究

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Pratham Gowtham , Mandar Jatkar
{"title":"基于DFT的氮化钪单层有害气体(NH3, AsH3, BF3, BCl3)传感器件应用研究","authors":"Pratham Gowtham ,&nbsp;Mandar Jatkar","doi":"10.1016/j.micrna.2025.208100","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the structural stability and electronic properties of zigzag Scandium Nitride Nanoribbon (ZScNNR) configurations, with a particular emphasis on their application in detecting toxic gases such as NH<sub>3</sub>, AsH<sub>3</sub>, BF<sub>3</sub>, and BCl<sub>3</sub>. Our comprehensive analysis reveals that all studied ZScNNR gas configurations exhibit semiconductor-like behavior except BCl<sub>3</sub>, as evidenced by their calculated band structures and density of states (DOS). Among these configurations, the Bare-ZScNNR-6 configuration emerges as the most thermodynamically stable. Furthermore, the configurations involving AsH<sub>3</sub> at width 2 are energetically favorable (-2.57eV). Importantly, the study highlights the remarkable selectivity of AsH<sub>3</sub> on BF<sub>3</sub> i.e 2.5. It shows their potential as effective nanosensors. In particular, the BCl<sub>3</sub> and NH<sub>3</sub> ZScNNR-6 configurations demonstrate an impressive response time of just 7.7 microseconds, establishing them as highly efficient sensor options. These findings underscore the significant potential of ZScNNR-based nanosensors for rapid and selective toxic gas detection, paving the way for their integration into advanced nanoscale sensing devices.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"201 ","pages":"Article 208100"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT based study to sense harmful gases (NH3, AsH3, BF3, BCl3) using Scandium Nitride monolayer for sensing device applications\",\"authors\":\"Pratham Gowtham ,&nbsp;Mandar Jatkar\",\"doi\":\"10.1016/j.micrna.2025.208100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the structural stability and electronic properties of zigzag Scandium Nitride Nanoribbon (ZScNNR) configurations, with a particular emphasis on their application in detecting toxic gases such as NH<sub>3</sub>, AsH<sub>3</sub>, BF<sub>3</sub>, and BCl<sub>3</sub>. Our comprehensive analysis reveals that all studied ZScNNR gas configurations exhibit semiconductor-like behavior except BCl<sub>3</sub>, as evidenced by their calculated band structures and density of states (DOS). Among these configurations, the Bare-ZScNNR-6 configuration emerges as the most thermodynamically stable. Furthermore, the configurations involving AsH<sub>3</sub> at width 2 are energetically favorable (-2.57eV). Importantly, the study highlights the remarkable selectivity of AsH<sub>3</sub> on BF<sub>3</sub> i.e 2.5. It shows their potential as effective nanosensors. In particular, the BCl<sub>3</sub> and NH<sub>3</sub> ZScNNR-6 configurations demonstrate an impressive response time of just 7.7 microseconds, establishing them as highly efficient sensor options. These findings underscore the significant potential of ZScNNR-based nanosensors for rapid and selective toxic gas detection, paving the way for their integration into advanced nanoscale sensing devices.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"201 \",\"pages\":\"Article 208100\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了锯齿形氮化钪纳米带(ZScNNR)的结构稳定性和电子性能,特别强调了它们在检测有毒气体(如NH3, AsH3, BF3和BCl3)中的应用。我们的综合分析表明,除BCl3外,所有研究的ZScNNR气体构型都表现出类似半导体的行为,这一点可以从它们的能带结构和态密度(DOS)中得到证明。在这些构型中,Bare-ZScNNR-6构型表现出最稳定的热力学特性。此外,宽度2处涉及AsH3的构型在能量上有利(-2.57eV)。重要的是,该研究强调了AsH3对BF3(即2.5)的显著选择性。这显示了它们作为有效纳米传感器的潜力。特别是,BCl3和NH3 ZScNNR-6配置显示出令人印象深刻的响应时间,仅为7.7微秒,使它们成为高效的传感器选项。这些发现强调了基于zscnnr的纳米传感器在快速和选择性有毒气体检测方面的巨大潜力,为其集成到先进的纳米级传感设备中铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFT based study to sense harmful gases (NH3, AsH3, BF3, BCl3) using Scandium Nitride monolayer for sensing device applications
In this study, we investigate the structural stability and electronic properties of zigzag Scandium Nitride Nanoribbon (ZScNNR) configurations, with a particular emphasis on their application in detecting toxic gases such as NH3, AsH3, BF3, and BCl3. Our comprehensive analysis reveals that all studied ZScNNR gas configurations exhibit semiconductor-like behavior except BCl3, as evidenced by their calculated band structures and density of states (DOS). Among these configurations, the Bare-ZScNNR-6 configuration emerges as the most thermodynamically stable. Furthermore, the configurations involving AsH3 at width 2 are energetically favorable (-2.57eV). Importantly, the study highlights the remarkable selectivity of AsH3 on BF3 i.e 2.5. It shows their potential as effective nanosensors. In particular, the BCl3 and NH3 ZScNNR-6 configurations demonstrate an impressive response time of just 7.7 microseconds, establishing them as highly efficient sensor options. These findings underscore the significant potential of ZScNNR-based nanosensors for rapid and selective toxic gas detection, paving the way for their integration into advanced nanoscale sensing devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信