自由分子状态下凸非球形颗粒的剪切升力

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Xinquan Chang , Song Yu , Kexue Zhang , Shaobin Zhuo , Jun Wang , Guodong Xia , Zhigang Li
{"title":"自由分子状态下凸非球形颗粒的剪切升力","authors":"Xinquan Chang ,&nbsp;Song Yu ,&nbsp;Kexue Zhang ,&nbsp;Shaobin Zhuo ,&nbsp;Jun Wang ,&nbsp;Guodong Xia ,&nbsp;Zhigang Li","doi":"10.1016/j.jaerosci.2025.106546","DOIUrl":null,"url":null,"abstract":"<div><div>For the theoretical description of the lift forces on particle suspended in a gas, a real particle is usually simplified as a sphere. However, most real particles are non-spherical particles. The influence of the geometric shape and orientation on the transport of the suspended particle is unambiguously non-negligible. In the present paper, the shear lift forces exerted on non-spherical particles are studied in the free molecular regime. Based on the gas kinetic theory, the expressions for effective forces are obtained by integrating the forces on the surface element over the whole particle surface. It is theoretically found that the effective forces are proportional to the surface area of the particle, and the proportion coefficient is independent of the particle size or shape, providing that the particle orientation distribution is uniform. These findings in the present paper has been verified by direct simulation Monte Carlo and can simplify the calculation of the shear lift forces on non-spherical particles in the free molecular regime with a wider range of practical applications.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"185 ","pages":"Article 106546"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear lift forces on convex non-spherical particles in the free molecular regime\",\"authors\":\"Xinquan Chang ,&nbsp;Song Yu ,&nbsp;Kexue Zhang ,&nbsp;Shaobin Zhuo ,&nbsp;Jun Wang ,&nbsp;Guodong Xia ,&nbsp;Zhigang Li\",\"doi\":\"10.1016/j.jaerosci.2025.106546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the theoretical description of the lift forces on particle suspended in a gas, a real particle is usually simplified as a sphere. However, most real particles are non-spherical particles. The influence of the geometric shape and orientation on the transport of the suspended particle is unambiguously non-negligible. In the present paper, the shear lift forces exerted on non-spherical particles are studied in the free molecular regime. Based on the gas kinetic theory, the expressions for effective forces are obtained by integrating the forces on the surface element over the whole particle surface. It is theoretically found that the effective forces are proportional to the surface area of the particle, and the proportion coefficient is independent of the particle size or shape, providing that the particle orientation distribution is uniform. These findings in the present paper has been verified by direct simulation Monte Carlo and can simplify the calculation of the shear lift forces on non-spherical particles in the free molecular regime with a wider range of practical applications.</div></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":\"185 \",\"pages\":\"Article 106546\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850225000230\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850225000230","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于悬浮在气体中的粒子所受升力的理论描述,通常将实粒子简化为球体。然而,大多数真实粒子是非球形粒子。几何形状和方向对悬浮粒子输运的影响无疑是不可忽略的。本文研究了非球形粒子在自由分子状态下的剪切升力。根据气体动力学理论,对整个颗粒表面上的表面单元的力进行积分,得到了有效作用力的表达式。理论上发现,在粒子取向分布均匀的情况下,有效作用力与颗粒表面积成正比,比例系数与颗粒大小或形状无关。本文的研究结果已被直接模拟蒙特卡罗验证,可以简化非球形粒子在自由分子状态下的剪切升力的计算,具有更广泛的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shear lift forces on convex non-spherical particles in the free molecular regime
For the theoretical description of the lift forces on particle suspended in a gas, a real particle is usually simplified as a sphere. However, most real particles are non-spherical particles. The influence of the geometric shape and orientation on the transport of the suspended particle is unambiguously non-negligible. In the present paper, the shear lift forces exerted on non-spherical particles are studied in the free molecular regime. Based on the gas kinetic theory, the expressions for effective forces are obtained by integrating the forces on the surface element over the whole particle surface. It is theoretically found that the effective forces are proportional to the surface area of the particle, and the proportion coefficient is independent of the particle size or shape, providing that the particle orientation distribution is uniform. These findings in the present paper has been verified by direct simulation Monte Carlo and can simplify the calculation of the shear lift forces on non-spherical particles in the free molecular regime with a wider range of practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信