基于最小绝对收缩和选择算子的传递函数稀疏估计方法

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
S.K. Laha
{"title":"基于最小绝对收缩和选择算子的传递函数稀疏估计方法","authors":"S.K. Laha","doi":"10.1016/j.ifacsc.2025.100299","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating transfer functions from sampled input–output data is a critical task in system identification. Traditional approaches, such as least square optimization, often result in dense parameter estimates, which can be less interpretable and computationally intensive. This paper introduces a novel method for transfer function estimation by applying the Least Absolute Shrinkage and Selection Operator (LASSO), which promotes sparsity in the identified coefficients. The proposed approach enables sparse identification of both the numerator and denominator coefficients of the transfer function. The efficacy of the method is demonstrated through numerical experiments and application to the estimation of the natural frequencies of a turbine blade from its impulse response. By leveraging LASSO, we achieve a more parsimonious and interpretable model that captures the essential dynamics of the system. The results highlight the advantages of sparse modelling in system identification and its potential for improving the understanding and prediction of complex mechanical systems.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"31 ","pages":"Article 100299"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sparse approach to transfer function estimation via Least Absolute Shrinkage and Selection Operator\",\"authors\":\"S.K. Laha\",\"doi\":\"10.1016/j.ifacsc.2025.100299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Estimating transfer functions from sampled input–output data is a critical task in system identification. Traditional approaches, such as least square optimization, often result in dense parameter estimates, which can be less interpretable and computationally intensive. This paper introduces a novel method for transfer function estimation by applying the Least Absolute Shrinkage and Selection Operator (LASSO), which promotes sparsity in the identified coefficients. The proposed approach enables sparse identification of both the numerator and denominator coefficients of the transfer function. The efficacy of the method is demonstrated through numerical experiments and application to the estimation of the natural frequencies of a turbine blade from its impulse response. By leveraging LASSO, we achieve a more parsimonious and interpretable model that captures the essential dynamics of the system. The results highlight the advantages of sparse modelling in system identification and its potential for improving the understanding and prediction of complex mechanical systems.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"31 \",\"pages\":\"Article 100299\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601825000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

从采样的输入输出数据中估计传递函数是系统辨识中的一项关键任务。传统的方法,如最小二乘优化,通常会导致密集的参数估计,这可能不太可解释性和计算密集。本文提出了一种利用最小绝对收缩和选择算子(LASSO)来估计传递函数的新方法,该方法提高了识别系数的稀疏性。提出的方法可以稀疏识别传递函数的分子和分母系数。数值实验结果表明了该方法的有效性,并将其应用于涡轮叶片脉冲响应的固有频率估计。通过利用LASSO,我们实现了一个更简洁和可解释的模型,该模型捕获了系统的基本动态。结果突出了稀疏建模在系统识别中的优势,以及它在提高对复杂机械系统的理解和预测方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sparse approach to transfer function estimation via Least Absolute Shrinkage and Selection Operator
Estimating transfer functions from sampled input–output data is a critical task in system identification. Traditional approaches, such as least square optimization, often result in dense parameter estimates, which can be less interpretable and computationally intensive. This paper introduces a novel method for transfer function estimation by applying the Least Absolute Shrinkage and Selection Operator (LASSO), which promotes sparsity in the identified coefficients. The proposed approach enables sparse identification of both the numerator and denominator coefficients of the transfer function. The efficacy of the method is demonstrated through numerical experiments and application to the estimation of the natural frequencies of a turbine blade from its impulse response. By leveraging LASSO, we achieve a more parsimonious and interpretable model that captures the essential dynamics of the system. The results highlight the advantages of sparse modelling in system identification and its potential for improving the understanding and prediction of complex mechanical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信