Runhong Mu , Yupeng Li , Yunhe Cui , Chuanbo Feng , Tingyu Li , Tengda Liu , Mingzhu Chang , Xiao Guo , Xingcheng Yi
{"title":"人参皂苷Rb1和过氧化物还蛋白6通过抗炎、抗氧化和抗凋亡机制增强心肌损伤治疗的协同作用","authors":"Runhong Mu , Yupeng Li , Yunhe Cui , Chuanbo Feng , Tingyu Li , Tengda Liu , Mingzhu Chang , Xiao Guo , Xingcheng Yi","doi":"10.1016/j.jgr.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Aim</h3><div>Ginsenosides have notable bioactivity in treating cardiovascular diseases, but the mechanisms of their combined use with Peroxiredoxin 6 (PRDX6) in myocardial injury remain unclear. This study explores the synergistic effects of Ginsenoside Rb1 (Gs-Rb1) and PRDX6, aiming to provide a theoretical foundation for their therapeutic potential.</div></div><div><h3>Methods</h3><div>We established a rat model of isoproterenol (ISO)-induced myocardial injury and observed that combination therapy was more effective than single-drug treatments, as shown by ECG monitoring and Masson staining. We performed RNA sequencing (RNA-Seq) on the combination therapy group and the ISO group. The results indicated that, compared to the ISO group, the combination therapy alleviated myocardial injury by reducing inflammation, oxidative stress, and apoptosis. Further analyses, including cell morphology, apoptosis rates, HE staining, ROS fluorescence intensity, and inflammation-related proteins, confirmed that the combination therapy successfully inhibited apoptosis, managed oxidative stress, and lessened inflammation.</div></div><div><h3>Results</h3><div>Combined treatment with Gs-Rb1 and PRDX6 significantly inhibited cardiac tissue fibrosis in rats, leading to a marked decrease in serum CK and LDH levels. RNA-seq analysis revealed upregulated genes related to lipid metabolism and small molecule biosynthesis, while downregulated genes were associated with oxidative stress, inflammation, and apoptosis. Validation experiments confirmed the combined treatment's significant inhibition of apoptosis, ROS activity, and inflammation. These results support the effectiveness of the two-drug combination in suppressing key biological processes in cardiac tissue, suggesting potential mechanisms for combating cardiac fibrosis.</div></div><div><h3>Conclusion</h3><div>This study clarifies how Gs-Rb1 and PRDX6 work together to protect against myocardial damage, demonstrating that their combined therapy reduces inflammation, apoptosis, and oxidative stress. This highlights a new avenue for developing ginseng-based treatments.</div></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"49 2","pages":"Pages 145-155"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of ginsenoside Rb1 and peroxiredoxin 6 in enhancing myocardial injury treatment through anti-inflammatory, anti-oxidative, and anti-apoptotic mechanisms\",\"authors\":\"Runhong Mu , Yupeng Li , Yunhe Cui , Chuanbo Feng , Tingyu Li , Tengda Liu , Mingzhu Chang , Xiao Guo , Xingcheng Yi\",\"doi\":\"10.1016/j.jgr.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aim</h3><div>Ginsenosides have notable bioactivity in treating cardiovascular diseases, but the mechanisms of their combined use with Peroxiredoxin 6 (PRDX6) in myocardial injury remain unclear. This study explores the synergistic effects of Ginsenoside Rb1 (Gs-Rb1) and PRDX6, aiming to provide a theoretical foundation for their therapeutic potential.</div></div><div><h3>Methods</h3><div>We established a rat model of isoproterenol (ISO)-induced myocardial injury and observed that combination therapy was more effective than single-drug treatments, as shown by ECG monitoring and Masson staining. We performed RNA sequencing (RNA-Seq) on the combination therapy group and the ISO group. The results indicated that, compared to the ISO group, the combination therapy alleviated myocardial injury by reducing inflammation, oxidative stress, and apoptosis. Further analyses, including cell morphology, apoptosis rates, HE staining, ROS fluorescence intensity, and inflammation-related proteins, confirmed that the combination therapy successfully inhibited apoptosis, managed oxidative stress, and lessened inflammation.</div></div><div><h3>Results</h3><div>Combined treatment with Gs-Rb1 and PRDX6 significantly inhibited cardiac tissue fibrosis in rats, leading to a marked decrease in serum CK and LDH levels. RNA-seq analysis revealed upregulated genes related to lipid metabolism and small molecule biosynthesis, while downregulated genes were associated with oxidative stress, inflammation, and apoptosis. Validation experiments confirmed the combined treatment's significant inhibition of apoptosis, ROS activity, and inflammation. These results support the effectiveness of the two-drug combination in suppressing key biological processes in cardiac tissue, suggesting potential mechanisms for combating cardiac fibrosis.</div></div><div><h3>Conclusion</h3><div>This study clarifies how Gs-Rb1 and PRDX6 work together to protect against myocardial damage, demonstrating that their combined therapy reduces inflammation, apoptosis, and oxidative stress. This highlights a new avenue for developing ginseng-based treatments.</div></div>\",\"PeriodicalId\":16035,\"journal\":{\"name\":\"Journal of Ginseng Research\",\"volume\":\"49 2\",\"pages\":\"Pages 145-155\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ginseng Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226845324001568\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845324001568","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synergistic effects of ginsenoside Rb1 and peroxiredoxin 6 in enhancing myocardial injury treatment through anti-inflammatory, anti-oxidative, and anti-apoptotic mechanisms
Aim
Ginsenosides have notable bioactivity in treating cardiovascular diseases, but the mechanisms of their combined use with Peroxiredoxin 6 (PRDX6) in myocardial injury remain unclear. This study explores the synergistic effects of Ginsenoside Rb1 (Gs-Rb1) and PRDX6, aiming to provide a theoretical foundation for their therapeutic potential.
Methods
We established a rat model of isoproterenol (ISO)-induced myocardial injury and observed that combination therapy was more effective than single-drug treatments, as shown by ECG monitoring and Masson staining. We performed RNA sequencing (RNA-Seq) on the combination therapy group and the ISO group. The results indicated that, compared to the ISO group, the combination therapy alleviated myocardial injury by reducing inflammation, oxidative stress, and apoptosis. Further analyses, including cell morphology, apoptosis rates, HE staining, ROS fluorescence intensity, and inflammation-related proteins, confirmed that the combination therapy successfully inhibited apoptosis, managed oxidative stress, and lessened inflammation.
Results
Combined treatment with Gs-Rb1 and PRDX6 significantly inhibited cardiac tissue fibrosis in rats, leading to a marked decrease in serum CK and LDH levels. RNA-seq analysis revealed upregulated genes related to lipid metabolism and small molecule biosynthesis, while downregulated genes were associated with oxidative stress, inflammation, and apoptosis. Validation experiments confirmed the combined treatment's significant inhibition of apoptosis, ROS activity, and inflammation. These results support the effectiveness of the two-drug combination in suppressing key biological processes in cardiac tissue, suggesting potential mechanisms for combating cardiac fibrosis.
Conclusion
This study clarifies how Gs-Rb1 and PRDX6 work together to protect against myocardial damage, demonstrating that their combined therapy reduces inflammation, apoptosis, and oxidative stress. This highlights a new avenue for developing ginseng-based treatments.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.