Qing Wang , Guanbin Wen , Zhengfang Yang , Qianqian Guo , Bin Zhang , Yanli Nie , Dongquan Wang
{"title":"Preparation and study of CDs-WO3 composites with enhanced photocatalytic antimicrobial properties and degradation of dyes","authors":"Qing Wang , Guanbin Wen , Zhengfang Yang , Qianqian Guo , Bin Zhang , Yanli Nie , Dongquan Wang","doi":"10.1016/j.bej.2025.109670","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, carbon dots (CDs) and tungsten trioxide (WO<sub>3</sub>) were combined to prepare CDs-WO<sub>3</sub> composites for photocatalytic treatment of bacteria and organic dyes in wastewater. The optical properties, antimicrobial properties, antimicrobial mechanism, and photocatalytic degradation performance were also investigated. The CDs-WO<sub>3</sub> composites exhibited enhanced UV absorption intensity, broadened visible light absorption range, good charge transfer and carrier separation abilities, and reduced bandgap. The antimicrobial rate of CDs-WO<sub>3</sub> against <em>Staphylococcus aureus</em> can reach 98 %. The antibacterial mechanism of CDs-WO<sub>3</sub> was found to be the reactive oxygen species damage mechanism. Electron paramagnetic resonance (EPR) analysis revealed that the reactive oxygen species signal intensity of CDs-WO<sub>3</sub> was significantly higher than that of WO<sub>3</sub>, indicating that more <strong>·</strong>O<sub>2</sub><sup><strong>-</strong></sup> and <strong>·</strong>OH were produced. The analysis of bacterial cell activity demonstrated that CDs-WO<sub>3</sub> composites reduced the activity of respiratory chain dehydrogenase in bacteria, which resulted in increased lipid peroxidation in the cell membrane. The photocatalytic degradation performance showed that the photocatalytic degradation efficiency of CDs-WO<sub>3</sub> for methylene blue and malachite green reached 87 % and 88.04 %, respectively. The application of CDs-WO<sub>3</sub> in real water bodies also showed good antibacterial effect and dye degradation.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"217 ","pages":"Article 109670"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000439","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Preparation and study of CDs-WO3 composites with enhanced photocatalytic antimicrobial properties and degradation of dyes
In this study, carbon dots (CDs) and tungsten trioxide (WO3) were combined to prepare CDs-WO3 composites for photocatalytic treatment of bacteria and organic dyes in wastewater. The optical properties, antimicrobial properties, antimicrobial mechanism, and photocatalytic degradation performance were also investigated. The CDs-WO3 composites exhibited enhanced UV absorption intensity, broadened visible light absorption range, good charge transfer and carrier separation abilities, and reduced bandgap. The antimicrobial rate of CDs-WO3 against Staphylococcus aureus can reach 98 %. The antibacterial mechanism of CDs-WO3 was found to be the reactive oxygen species damage mechanism. Electron paramagnetic resonance (EPR) analysis revealed that the reactive oxygen species signal intensity of CDs-WO3 was significantly higher than that of WO3, indicating that more ·O2- and ·OH were produced. The analysis of bacterial cell activity demonstrated that CDs-WO3 composites reduced the activity of respiratory chain dehydrogenase in bacteria, which resulted in increased lipid peroxidation in the cell membrane. The photocatalytic degradation performance showed that the photocatalytic degradation efficiency of CDs-WO3 for methylene blue and malachite green reached 87 % and 88.04 %, respectively. The application of CDs-WO3 in real water bodies also showed good antibacterial effect and dye degradation.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.