标量中立型微分方程的规定指数镇定:在神经控制中的应用

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Cyprien Tamekue , Islam Boussaada , Karim Trabelsi
{"title":"标量中立型微分方程的规定指数镇定:在神经控制中的应用","authors":"Cyprien Tamekue ,&nbsp;Islam Boussaada ,&nbsp;Karim Trabelsi","doi":"10.1016/j.ejcon.2025.101200","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a control-oriented delay-based modeling approach for the exponential stabilization of a scalar neutral functional differential equation, which is then applied to the local exponential stabilization of a one-layer neural network of Hopfield type with delayed feedback. The proposed approach utilizes a recently developed partial pole placement method for linear functional differential equations, leveraging the coexistence of real spectral values to explicitly prescribe the exponential decay of the closed-loop solution. While a delayed proportional (P) feedback control may achieve stabilization, it requires higher gains and only allows for a shorter maximum delay compared to the proportional-derivative (PD) feedback control presented in this work. The framework provides a practical illustration of the stabilization strategy, improving upon previous literature results that characterize the solution’s exponential decay for simple real spectral values. This approach enhances neural stability in cases where the inherent dynamics are stable and offers a method to achieve local exponential stabilization with a prescribed decay rate when the inherent dynamics are unstable.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"83 ","pages":"Article 101200"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed exponential stabilization of scalar neutral differential equations: Application to neural control\",\"authors\":\"Cyprien Tamekue ,&nbsp;Islam Boussaada ,&nbsp;Karim Trabelsi\",\"doi\":\"10.1016/j.ejcon.2025.101200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a control-oriented delay-based modeling approach for the exponential stabilization of a scalar neutral functional differential equation, which is then applied to the local exponential stabilization of a one-layer neural network of Hopfield type with delayed feedback. The proposed approach utilizes a recently developed partial pole placement method for linear functional differential equations, leveraging the coexistence of real spectral values to explicitly prescribe the exponential decay of the closed-loop solution. While a delayed proportional (P) feedback control may achieve stabilization, it requires higher gains and only allows for a shorter maximum delay compared to the proportional-derivative (PD) feedback control presented in this work. The framework provides a practical illustration of the stabilization strategy, improving upon previous literature results that characterize the solution’s exponential decay for simple real spectral values. This approach enhances neural stability in cases where the inherent dynamics are stable and offers a method to achieve local exponential stabilization with a prescribed decay rate when the inherent dynamics are unstable.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"83 \",\"pages\":\"Article 101200\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358025000287\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358025000287","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于控制的中立型标量泛函微分方程指数镇定的建模方法,并将其应用于具有延迟反馈的Hopfield型单层神经网络的局部指数镇定。提出的方法利用最近开发的线性泛函微分方程的部分极点放置方法,利用实谱值的共存来明确规定闭环解的指数衰减。虽然延迟比例(P)反馈控制可以实现稳定,但与本工作中提出的比例导数(PD)反馈控制相比,它需要更高的增益,并且只允许更短的最大延迟。该框架提供了稳定策略的实际说明,改进了以前的文献结果,这些结果表征了简单真实光谱值的解的指数衰减。该方法在固有动态稳定的情况下增强了神经系统的稳定性,并在固有动态不稳定的情况下提供了一种以规定衰减率实现局部指数稳定的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribed exponential stabilization of scalar neutral differential equations: Application to neural control
This paper presents a control-oriented delay-based modeling approach for the exponential stabilization of a scalar neutral functional differential equation, which is then applied to the local exponential stabilization of a one-layer neural network of Hopfield type with delayed feedback. The proposed approach utilizes a recently developed partial pole placement method for linear functional differential equations, leveraging the coexistence of real spectral values to explicitly prescribe the exponential decay of the closed-loop solution. While a delayed proportional (P) feedback control may achieve stabilization, it requires higher gains and only allows for a shorter maximum delay compared to the proportional-derivative (PD) feedback control presented in this work. The framework provides a practical illustration of the stabilization strategy, improving upon previous literature results that characterize the solution’s exponential decay for simple real spectral values. This approach enhances neural stability in cases where the inherent dynamics are stable and offers a method to achieve local exponential stabilization with a prescribed decay rate when the inherent dynamics are unstable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信