破坏最密集的子图是困难的

IF 0.9 3区 计算机科学 Q1 BUSINESS, FINANCE
Cristina Bazgan , André Nichterlein , Sofia Vazquez Alferez
{"title":"破坏最密集的子图是困难的","authors":"Cristina Bazgan ,&nbsp;André Nichterlein ,&nbsp;Sofia Vazquez Alferez","doi":"10.1016/j.jcss.2025.103635","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the computational complexity of the following computational problems called <span>Bounded-Density Edge Deletion</span> and <span>Bounded-Density Vertex Deletion</span>: Given a graph <em>G</em>, a budget <em>k</em> and a target density <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>, are there <em>k</em> edges (<em>k</em> vertices) whose removal from <em>G</em> results in a graph where the densest subgraph has density at most <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>? Here, the density of a graph is the number of its edges divided by the number of its vertices. We prove that both problems are polynomial-time solvable on trees and cliques but are NP-complete on planar bipartite graphs and split graphs. From a parameterized point of view, we show that both problems are fixed-parameter tractable with respect to the vertex cover number but W[1]-hard with respect to the solution size. Furthermore, we prove that <span>Bounded-Density Edge Deletion</span> is W[1]-hard with respect to the feedback edge number, demonstrating that the problem remains hard on very sparse graphs.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"151 ","pages":"Article 103635"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Destroying densest subgraphs is hard\",\"authors\":\"Cristina Bazgan ,&nbsp;André Nichterlein ,&nbsp;Sofia Vazquez Alferez\",\"doi\":\"10.1016/j.jcss.2025.103635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyze the computational complexity of the following computational problems called <span>Bounded-Density Edge Deletion</span> and <span>Bounded-Density Vertex Deletion</span>: Given a graph <em>G</em>, a budget <em>k</em> and a target density <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>, are there <em>k</em> edges (<em>k</em> vertices) whose removal from <em>G</em> results in a graph where the densest subgraph has density at most <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>? Here, the density of a graph is the number of its edges divided by the number of its vertices. We prove that both problems are polynomial-time solvable on trees and cliques but are NP-complete on planar bipartite graphs and split graphs. From a parameterized point of view, we show that both problems are fixed-parameter tractable with respect to the vertex cover number but W[1]-hard with respect to the solution size. Furthermore, we prove that <span>Bounded-Density Edge Deletion</span> is W[1]-hard with respect to the feedback edge number, demonstrating that the problem remains hard on very sparse graphs.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"151 \",\"pages\":\"Article 103635\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000170\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000170","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了以下计算问题的计算复杂性,称为有界密度边删除和有界密度顶点删除:给定一个图G,一个预算k和一个目标密度τρ,是否有k个边(k个顶点)从G中移除,结果是图中最密集的子图的密度最大τρ?这里,图的密度是它的边数除以顶点数。我们证明了这两个问题在树和团上是多项式时间可解的,而在平面二部图和分裂图上是np完全的。从参数化的角度来看,我们证明了这两个问题就顶点覆盖数而言是固定参数可处理的,但就解的大小而言是W[1]-难处理的。此外,我们证明了有界密度边删除相对于反馈边数是W[1]-困难的,表明该问题在非常稀疏的图上仍然困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Destroying densest subgraphs is hard
We analyze the computational complexity of the following computational problems called Bounded-Density Edge Deletion and Bounded-Density Vertex Deletion: Given a graph G, a budget k and a target density τρ, are there k edges (k vertices) whose removal from G results in a graph where the densest subgraph has density at most τρ? Here, the density of a graph is the number of its edges divided by the number of its vertices. We prove that both problems are polynomial-time solvable on trees and cliques but are NP-complete on planar bipartite graphs and split graphs. From a parameterized point of view, we show that both problems are fixed-parameter tractable with respect to the vertex cover number but W[1]-hard with respect to the solution size. Furthermore, we prove that Bounded-Density Edge Deletion is W[1]-hard with respect to the feedback edge number, demonstrating that the problem remains hard on very sparse graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信