n轨迹自举

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Wenliang Li
{"title":"n轨迹自举","authors":"Wenliang Li","doi":"10.1103/physrevd.111.045013","DOIUrl":null,"url":null,"abstract":"We perform an extensive bootstrap study of Hermitian and non-Hermitian theories based on the novel analytic continuation of ⟨</a:mo>ϕ</a:mi></a:mrow>n</a:mi></a:mrow></a:msup>⟩</a:mo></a:mrow></a:math> or <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mo stretchy=\"false\">⟨</e:mo><e:mo stretchy=\"false\">(</e:mo><e:mi>i</e:mi><e:mi>ϕ</e:mi><e:msup><e:mrow><e:mo stretchy=\"false\">)</e:mo></e:mrow><e:mrow><e:mi>n</e:mi></e:mrow></e:msup><e:mo stretchy=\"false\">⟩</e:mo></e:mrow></e:math> in <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>n</k:mi></k:math>. We first use the quantum harmonic oscillator to illustrate various aspects of the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msup><m:mi>ϕ</m:mi><m:mi>n</m:mi></m:msup></m:math> trajectory bootstrap method, such as the large <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>n</o:mi></o:math> expansion, matching conditions, exact quantization condition, and high energy asymptotic behavior. Then we derive highly accurate solutions for the anharmonic oscillators with the parity invariant potential <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>V</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mi>ϕ</q:mi><q:mo stretchy=\"false\">)</q:mo><q:mo>=</q:mo><q:msup><q:mi>ϕ</q:mi><q:mn>2</q:mn></q:msup><q:mo>+</q:mo><q:msup><q:mi>ϕ</q:mi><q:mi>m</q:mi></q:msup></q:math> and the <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi mathvariant=\"script\">P</u:mi><u:mi mathvariant=\"script\">T</u:mi></u:math> invariant potential <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>V</y:mi><y:mo stretchy=\"false\">(</y:mo><y:mi>ϕ</y:mi><y:mo stretchy=\"false\">)</y:mo><y:mo>=</y:mo><y:mo>−</y:mo><y:mo stretchy=\"false\">(</y:mo><y:mi>i</y:mi><y:mi>ϕ</y:mi><y:msup><y:mo stretchy=\"false\">)</y:mo><y:mi>m</y:mi></y:msup></y:math> for a large range of integral <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>m</eb:mi></eb:math>, showing the high efficiency and general applicability of this new bootstrap approach. For the Hermitian quartic and non-Hermitian cubic oscillators, we further verify that the noninteger <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>n</gb:mi></gb:math> results for <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mo stretchy=\"false\">⟨</ib:mo><ib:msup><ib:mi>ϕ</ib:mi><ib:mi>n</ib:mi></ib:msup><ib:mo stretchy=\"false\">⟩</ib:mo></ib:math> or <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mo stretchy=\"false\">⟨</mb:mo><mb:mo stretchy=\"false\">(</mb:mo><mb:mi>i</mb:mi><mb:mi>ϕ</mb:mi><mb:msup><mb:mo stretchy=\"false\">)</mb:mo><mb:mi>n</mb:mi></mb:msup><mb:mo stretchy=\"false\">⟩</mb:mo></mb:math> are consistent with those from the wave function approach. In the <sb:math xmlns:sb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><sb:mi mathvariant=\"script\">P</sb:mi><sb:mi mathvariant=\"script\">T</sb:mi></sb:math> invariant case, the existence of <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mo stretchy=\"false\">⟨</wb:mo><wb:mo stretchy=\"false\">(</wb:mo><wb:mi>i</wb:mi><wb:mi>ϕ</wb:mi><wb:msup><wb:mo stretchy=\"false\">)</wb:mo><wb:mi>n</wb:mi></wb:msup><wb:mo stretchy=\"false\">⟩</wb:mo></wb:math> with noninteger <cc:math xmlns:cc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cc:mi>n</cc:mi></cc:math> allows us to bootstrap the non-Hermitian theories with noninteger powers, such as fractional and irrational <ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:mi>m</ec:mi></ec:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ϕn trajectory bootstrap\",\"authors\":\"Wenliang Li\",\"doi\":\"10.1103/physrevd.111.045013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform an extensive bootstrap study of Hermitian and non-Hermitian theories based on the novel analytic continuation of ⟨</a:mo>ϕ</a:mi></a:mrow>n</a:mi></a:mrow></a:msup>⟩</a:mo></a:mrow></a:math> or <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mo stretchy=\\\"false\\\">⟨</e:mo><e:mo stretchy=\\\"false\\\">(</e:mo><e:mi>i</e:mi><e:mi>ϕ</e:mi><e:msup><e:mrow><e:mo stretchy=\\\"false\\\">)</e:mo></e:mrow><e:mrow><e:mi>n</e:mi></e:mrow></e:msup><e:mo stretchy=\\\"false\\\">⟩</e:mo></e:mrow></e:math> in <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>n</k:mi></k:math>. We first use the quantum harmonic oscillator to illustrate various aspects of the <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msup><m:mi>ϕ</m:mi><m:mi>n</m:mi></m:msup></m:math> trajectory bootstrap method, such as the large <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>n</o:mi></o:math> expansion, matching conditions, exact quantization condition, and high energy asymptotic behavior. Then we derive highly accurate solutions for the anharmonic oscillators with the parity invariant potential <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>V</q:mi><q:mo stretchy=\\\"false\\\">(</q:mo><q:mi>ϕ</q:mi><q:mo stretchy=\\\"false\\\">)</q:mo><q:mo>=</q:mo><q:msup><q:mi>ϕ</q:mi><q:mn>2</q:mn></q:msup><q:mo>+</q:mo><q:msup><q:mi>ϕ</q:mi><q:mi>m</q:mi></q:msup></q:math> and the <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi mathvariant=\\\"script\\\">P</u:mi><u:mi mathvariant=\\\"script\\\">T</u:mi></u:math> invariant potential <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:mi>V</y:mi><y:mo stretchy=\\\"false\\\">(</y:mo><y:mi>ϕ</y:mi><y:mo stretchy=\\\"false\\\">)</y:mo><y:mo>=</y:mo><y:mo>−</y:mo><y:mo stretchy=\\\"false\\\">(</y:mo><y:mi>i</y:mi><y:mi>ϕ</y:mi><y:msup><y:mo stretchy=\\\"false\\\">)</y:mo><y:mi>m</y:mi></y:msup></y:math> for a large range of integral <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:mi>m</eb:mi></eb:math>, showing the high efficiency and general applicability of this new bootstrap approach. For the Hermitian quartic and non-Hermitian cubic oscillators, we further verify that the noninteger <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mi>n</gb:mi></gb:math> results for <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mo stretchy=\\\"false\\\">⟨</ib:mo><ib:msup><ib:mi>ϕ</ib:mi><ib:mi>n</ib:mi></ib:msup><ib:mo stretchy=\\\"false\\\">⟩</ib:mo></ib:math> or <mb:math xmlns:mb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mb:mo stretchy=\\\"false\\\">⟨</mb:mo><mb:mo stretchy=\\\"false\\\">(</mb:mo><mb:mi>i</mb:mi><mb:mi>ϕ</mb:mi><mb:msup><mb:mo stretchy=\\\"false\\\">)</mb:mo><mb:mi>n</mb:mi></mb:msup><mb:mo stretchy=\\\"false\\\">⟩</mb:mo></mb:math> are consistent with those from the wave function approach. In the <sb:math xmlns:sb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><sb:mi mathvariant=\\\"script\\\">P</sb:mi><sb:mi mathvariant=\\\"script\\\">T</sb:mi></sb:math> invariant case, the existence of <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mo stretchy=\\\"false\\\">⟨</wb:mo><wb:mo stretchy=\\\"false\\\">(</wb:mo><wb:mi>i</wb:mi><wb:mi>ϕ</wb:mi><wb:msup><wb:mo stretchy=\\\"false\\\">)</wb:mo><wb:mi>n</wb:mi></wb:msup><wb:mo stretchy=\\\"false\\\">⟩</wb:mo></wb:math> with noninteger <cc:math xmlns:cc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cc:mi>n</cc:mi></cc:math> allows us to bootstrap the non-Hermitian theories with noninteger powers, such as fractional and irrational <ec:math xmlns:ec=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ec:mi>m</ec:mi></ec:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.045013\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.045013","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们基于⟨ϕn⟩或⟨(iϕ)n⟩在n中的新颖解析延续,对厄米和非厄米理论进行了广泛的自举研究。我们首先使用量子谐振子来说明ϕn轨迹自举方法的各个方面,例如大n展开,匹配条件,精确量化条件和高能量渐近行为。然后,我们对奇偶不变势V(ϕ)= 2+ m和PT不变势V(ϕ)=−(iϕ)m在很大范围内的非调和振子给出了高精度的解,显示了这种新的自举方法的高效率和普遍适用性。对于厄米四次和非厄米三次振子,我们进一步验证⟨ϕn⟩或⟨(iϕ)n⟩的非整数n结果与来自波函数方法的结果一致。在PT不变量的情况下,⟨(iϕ)n⟩与非整数n的存在允许我们引导非整数幂的非厄米理论,例如分数和无理性m。由美国物理学会2025年出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ϕn trajectory bootstrap
We perform an extensive bootstrap study of Hermitian and non-Hermitian theories based on the novel analytic continuation of ⟨ϕn⟩ or (iϕ)n in n. We first use the quantum harmonic oscillator to illustrate various aspects of the ϕn trajectory bootstrap method, such as the large n expansion, matching conditions, exact quantization condition, and high energy asymptotic behavior. Then we derive highly accurate solutions for the anharmonic oscillators with the parity invariant potential V(ϕ)=ϕ2+ϕm and the PT invariant potential V(ϕ)=(iϕ)m for a large range of integral m, showing the high efficiency and general applicability of this new bootstrap approach. For the Hermitian quartic and non-Hermitian cubic oscillators, we further verify that the noninteger n results for ϕn or (iϕ)n are consistent with those from the wave function approach. In the PT invariant case, the existence of (iϕ)n with noninteger n allows us to bootstrap the non-Hermitian theories with noninteger powers, such as fractional and irrational m. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信