{"title":"n轨迹自举","authors":"Wenliang Li","doi":"10.1103/physrevd.111.045013","DOIUrl":null,"url":null,"abstract":"We perform an extensive bootstrap study of Hermitian and non-Hermitian theories based on the novel analytic continuation of ⟨</a:mo>ϕ</a:mi></a:mrow>n</a:mi></a:mrow></a:msup>⟩</a:mo></a:mrow></a:math> or <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mo stretchy=\"false\">⟨</e:mo><e:mo stretchy=\"false\">(</e:mo><e:mi>i</e:mi><e:mi>ϕ</e:mi><e:msup><e:mrow><e:mo stretchy=\"false\">)</e:mo></e:mrow><e:mrow><e:mi>n</e:mi></e:mrow></e:msup><e:mo stretchy=\"false\">⟩</e:mo></e:mrow></e:math> in <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>n</k:mi></k:math>. We first use the quantum harmonic oscillator to illustrate various aspects of the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msup><m:mi>ϕ</m:mi><m:mi>n</m:mi></m:msup></m:math> trajectory bootstrap method, such as the large <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>n</o:mi></o:math> expansion, matching conditions, exact quantization condition, and high energy asymptotic behavior. Then we derive highly accurate solutions for the anharmonic oscillators with the parity invariant potential <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>V</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mi>ϕ</q:mi><q:mo stretchy=\"false\">)</q:mo><q:mo>=</q:mo><q:msup><q:mi>ϕ</q:mi><q:mn>2</q:mn></q:msup><q:mo>+</q:mo><q:msup><q:mi>ϕ</q:mi><q:mi>m</q:mi></q:msup></q:math> and the <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi mathvariant=\"script\">P</u:mi><u:mi mathvariant=\"script\">T</u:mi></u:math> invariant potential <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>V</y:mi><y:mo stretchy=\"false\">(</y:mo><y:mi>ϕ</y:mi><y:mo stretchy=\"false\">)</y:mo><y:mo>=</y:mo><y:mo>−</y:mo><y:mo stretchy=\"false\">(</y:mo><y:mi>i</y:mi><y:mi>ϕ</y:mi><y:msup><y:mo stretchy=\"false\">)</y:mo><y:mi>m</y:mi></y:msup></y:math> for a large range of integral <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>m</eb:mi></eb:math>, showing the high efficiency and general applicability of this new bootstrap approach. For the Hermitian quartic and non-Hermitian cubic oscillators, we further verify that the noninteger <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>n</gb:mi></gb:math> results for <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mo stretchy=\"false\">⟨</ib:mo><ib:msup><ib:mi>ϕ</ib:mi><ib:mi>n</ib:mi></ib:msup><ib:mo stretchy=\"false\">⟩</ib:mo></ib:math> or <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mo stretchy=\"false\">⟨</mb:mo><mb:mo stretchy=\"false\">(</mb:mo><mb:mi>i</mb:mi><mb:mi>ϕ</mb:mi><mb:msup><mb:mo stretchy=\"false\">)</mb:mo><mb:mi>n</mb:mi></mb:msup><mb:mo stretchy=\"false\">⟩</mb:mo></mb:math> are consistent with those from the wave function approach. In the <sb:math xmlns:sb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><sb:mi mathvariant=\"script\">P</sb:mi><sb:mi mathvariant=\"script\">T</sb:mi></sb:math> invariant case, the existence of <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mo stretchy=\"false\">⟨</wb:mo><wb:mo stretchy=\"false\">(</wb:mo><wb:mi>i</wb:mi><wb:mi>ϕ</wb:mi><wb:msup><wb:mo stretchy=\"false\">)</wb:mo><wb:mi>n</wb:mi></wb:msup><wb:mo stretchy=\"false\">⟩</wb:mo></wb:math> with noninteger <cc:math xmlns:cc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cc:mi>n</cc:mi></cc:math> allows us to bootstrap the non-Hermitian theories with noninteger powers, such as fractional and irrational <ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:mi>m</ec:mi></ec:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ϕn trajectory bootstrap\",\"authors\":\"Wenliang Li\",\"doi\":\"10.1103/physrevd.111.045013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform an extensive bootstrap study of Hermitian and non-Hermitian theories based on the novel analytic continuation of ⟨</a:mo>ϕ</a:mi></a:mrow>n</a:mi></a:mrow></a:msup>⟩</a:mo></a:mrow></a:math> or <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mo stretchy=\\\"false\\\">⟨</e:mo><e:mo stretchy=\\\"false\\\">(</e:mo><e:mi>i</e:mi><e:mi>ϕ</e:mi><e:msup><e:mrow><e:mo stretchy=\\\"false\\\">)</e:mo></e:mrow><e:mrow><e:mi>n</e:mi></e:mrow></e:msup><e:mo stretchy=\\\"false\\\">⟩</e:mo></e:mrow></e:math> in <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>n</k:mi></k:math>. We first use the quantum harmonic oscillator to illustrate various aspects of the <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msup><m:mi>ϕ</m:mi><m:mi>n</m:mi></m:msup></m:math> trajectory bootstrap method, such as the large <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>n</o:mi></o:math> expansion, matching conditions, exact quantization condition, and high energy asymptotic behavior. Then we derive highly accurate solutions for the anharmonic oscillators with the parity invariant potential <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>V</q:mi><q:mo stretchy=\\\"false\\\">(</q:mo><q:mi>ϕ</q:mi><q:mo stretchy=\\\"false\\\">)</q:mo><q:mo>=</q:mo><q:msup><q:mi>ϕ</q:mi><q:mn>2</q:mn></q:msup><q:mo>+</q:mo><q:msup><q:mi>ϕ</q:mi><q:mi>m</q:mi></q:msup></q:math> and the <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi mathvariant=\\\"script\\\">P</u:mi><u:mi mathvariant=\\\"script\\\">T</u:mi></u:math> invariant potential <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:mi>V</y:mi><y:mo stretchy=\\\"false\\\">(</y:mo><y:mi>ϕ</y:mi><y:mo stretchy=\\\"false\\\">)</y:mo><y:mo>=</y:mo><y:mo>−</y:mo><y:mo stretchy=\\\"false\\\">(</y:mo><y:mi>i</y:mi><y:mi>ϕ</y:mi><y:msup><y:mo stretchy=\\\"false\\\">)</y:mo><y:mi>m</y:mi></y:msup></y:math> for a large range of integral <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:mi>m</eb:mi></eb:math>, showing the high efficiency and general applicability of this new bootstrap approach. For the Hermitian quartic and non-Hermitian cubic oscillators, we further verify that the noninteger <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mi>n</gb:mi></gb:math> results for <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mo stretchy=\\\"false\\\">⟨</ib:mo><ib:msup><ib:mi>ϕ</ib:mi><ib:mi>n</ib:mi></ib:msup><ib:mo stretchy=\\\"false\\\">⟩</ib:mo></ib:math> or <mb:math xmlns:mb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mb:mo stretchy=\\\"false\\\">⟨</mb:mo><mb:mo stretchy=\\\"false\\\">(</mb:mo><mb:mi>i</mb:mi><mb:mi>ϕ</mb:mi><mb:msup><mb:mo stretchy=\\\"false\\\">)</mb:mo><mb:mi>n</mb:mi></mb:msup><mb:mo stretchy=\\\"false\\\">⟩</mb:mo></mb:math> are consistent with those from the wave function approach. In the <sb:math xmlns:sb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><sb:mi mathvariant=\\\"script\\\">P</sb:mi><sb:mi mathvariant=\\\"script\\\">T</sb:mi></sb:math> invariant case, the existence of <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mo stretchy=\\\"false\\\">⟨</wb:mo><wb:mo stretchy=\\\"false\\\">(</wb:mo><wb:mi>i</wb:mi><wb:mi>ϕ</wb:mi><wb:msup><wb:mo stretchy=\\\"false\\\">)</wb:mo><wb:mi>n</wb:mi></wb:msup><wb:mo stretchy=\\\"false\\\">⟩</wb:mo></wb:math> with noninteger <cc:math xmlns:cc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cc:mi>n</cc:mi></cc:math> allows us to bootstrap the non-Hermitian theories with noninteger powers, such as fractional and irrational <ec:math xmlns:ec=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ec:mi>m</ec:mi></ec:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.045013\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.045013","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We perform an extensive bootstrap study of Hermitian and non-Hermitian theories based on the novel analytic continuation of ⟨ϕn⟩ or ⟨(iϕ)n⟩ in n. We first use the quantum harmonic oscillator to illustrate various aspects of the ϕn trajectory bootstrap method, such as the large n expansion, matching conditions, exact quantization condition, and high energy asymptotic behavior. Then we derive highly accurate solutions for the anharmonic oscillators with the parity invariant potential V(ϕ)=ϕ2+ϕm and the PT invariant potential V(ϕ)=−(iϕ)m for a large range of integral m, showing the high efficiency and general applicability of this new bootstrap approach. For the Hermitian quartic and non-Hermitian cubic oscillators, we further verify that the noninteger n results for ⟨ϕn⟩ or ⟨(iϕ)n⟩ are consistent with those from the wave function approach. In the PT invariant case, the existence of ⟨(iϕ)n⟩ with noninteger n allows us to bootstrap the non-Hermitian theories with noninteger powers, such as fractional and irrational m. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.