应用光学相干断层扫描的深度学习变分自编码器方法量化视神经病变视网膜神经节细胞损失和进展的空间模式。

Frontiers in ophthalmology Pub Date : 2025-02-03 eCollection Date: 2024-01-01 DOI:10.3389/fopht.2024.1497848
Jui-Kai Wang, Brett A Johnson, Zhi Chen, Honghai Zhang, David Szanto, Brian Woods, Michael Wall, Young H Kwon, Edward F Linton, Andrew Pouw, Mark J Kupersmith, Mona K Garvin, Randy H Kardon
{"title":"应用光学相干断层扫描的深度学习变分自编码器方法量化视神经病变视网膜神经节细胞损失和进展的空间模式。","authors":"Jui-Kai Wang, Brett A Johnson, Zhi Chen, Honghai Zhang, David Szanto, Brian Woods, Michael Wall, Young H Kwon, Edward F Linton, Andrew Pouw, Mark J Kupersmith, Mona K Garvin, Randy H Kardon","doi":"10.3389/fopht.2024.1497848","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Glaucoma, optic neuritis (ON), and non-arteritic anterior ischemic optic neuropathy (NAION) produce distinct patterns of retinal ganglion cell (RGC) damage. We propose a booster Variational Autoencoder (bVAE) to capture spatial variations in RGC loss and generate latent space (LS) montage maps that visualize different degrees and spatial patterns of optic nerve bundle injury. Furthermore, the bVAE model is capable of tracking the spatial pattern of RGC thinning over time and classifying the underlying cause.</p><p><strong>Methods: </strong>The bVAE model consists of an encoder, a display decoder, and a booster decoder. The encoder decomposes input ganglion cell layer (GCL) thickness maps into two display latent variables (dLVs) and eight booster latent variables (bLVs). The dLVs capture primary spatial patterns of RGC thinning, while the display decoder reconstructs the GCL map and creates the LS montage map. The bLVs add finer spatial details, improving reconstruction accuracy. XGBoost was used to analyze the dLVs and bLVs, estimating normal/abnormal GCL thinning and classifying diseases (glaucoma, ON, and NAION). A total of 10,701 OCT macular scans from 822 subjects were included in this study.</p><p><strong>Results: </strong>Incorporating bLVs improved reconstruction accuracy, with the image-based root-mean-square error (RMSE) between input and reconstructed GCL thickness maps decreasing from 5.55 ± 2.29 µm (two dLVs only) to 4.02 ± 1.61 µm (two dLVs and eight bLVs). However, the image-based structural similarity index (SSIM) remained similar (0.91 ± 0.04), indicating that just two dLVs effectively capture the main GCL spatial patterns. For classification, the XGBoost model achieved an AUC of 0.98 for identifying abnormal spatial patterns of GCL thinning over time using the dLVs. Disease classification yielded AUCs of 0.95 for glaucoma, 0.84 for ON, and 0.93 for NAION, with bLVs further increasing the AUCs to 0.96 for glaucoma, 0.93 for ON, and 0.99 for NAION.</p><p><strong>Conclusion: </strong>This study presents a novel approach to visualizing and quantifying GCL thinning patterns in optic neuropathies using the bVAE model. The combination of dLVs and bLVs enhances the model's ability to capture key spatial features and predict disease progression. Future work will focus on integrating additional image modalities to further refine the model's diagnostic capabilities.</p>","PeriodicalId":73096,"journal":{"name":"Frontiers in ophthalmology","volume":"4 ","pages":"1497848"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying the spatial patterns of retinal ganglion cell loss and progression in optic neuropathy by applying a deep learning variational autoencoder approach to optical coherence tomography.\",\"authors\":\"Jui-Kai Wang, Brett A Johnson, Zhi Chen, Honghai Zhang, David Szanto, Brian Woods, Michael Wall, Young H Kwon, Edward F Linton, Andrew Pouw, Mark J Kupersmith, Mona K Garvin, Randy H Kardon\",\"doi\":\"10.3389/fopht.2024.1497848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Glaucoma, optic neuritis (ON), and non-arteritic anterior ischemic optic neuropathy (NAION) produce distinct patterns of retinal ganglion cell (RGC) damage. We propose a booster Variational Autoencoder (bVAE) to capture spatial variations in RGC loss and generate latent space (LS) montage maps that visualize different degrees and spatial patterns of optic nerve bundle injury. Furthermore, the bVAE model is capable of tracking the spatial pattern of RGC thinning over time and classifying the underlying cause.</p><p><strong>Methods: </strong>The bVAE model consists of an encoder, a display decoder, and a booster decoder. The encoder decomposes input ganglion cell layer (GCL) thickness maps into two display latent variables (dLVs) and eight booster latent variables (bLVs). The dLVs capture primary spatial patterns of RGC thinning, while the display decoder reconstructs the GCL map and creates the LS montage map. The bLVs add finer spatial details, improving reconstruction accuracy. XGBoost was used to analyze the dLVs and bLVs, estimating normal/abnormal GCL thinning and classifying diseases (glaucoma, ON, and NAION). A total of 10,701 OCT macular scans from 822 subjects were included in this study.</p><p><strong>Results: </strong>Incorporating bLVs improved reconstruction accuracy, with the image-based root-mean-square error (RMSE) between input and reconstructed GCL thickness maps decreasing from 5.55 ± 2.29 µm (two dLVs only) to 4.02 ± 1.61 µm (two dLVs and eight bLVs). However, the image-based structural similarity index (SSIM) remained similar (0.91 ± 0.04), indicating that just two dLVs effectively capture the main GCL spatial patterns. For classification, the XGBoost model achieved an AUC of 0.98 for identifying abnormal spatial patterns of GCL thinning over time using the dLVs. Disease classification yielded AUCs of 0.95 for glaucoma, 0.84 for ON, and 0.93 for NAION, with bLVs further increasing the AUCs to 0.96 for glaucoma, 0.93 for ON, and 0.99 for NAION.</p><p><strong>Conclusion: </strong>This study presents a novel approach to visualizing and quantifying GCL thinning patterns in optic neuropathies using the bVAE model. The combination of dLVs and bLVs enhances the model's ability to capture key spatial features and predict disease progression. Future work will focus on integrating additional image modalities to further refine the model's diagnostic capabilities.</p>\",\"PeriodicalId\":73096,\"journal\":{\"name\":\"Frontiers in ophthalmology\",\"volume\":\"4 \",\"pages\":\"1497848\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fopht.2024.1497848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fopht.2024.1497848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

青光眼、视神经炎(ON)和非动脉性前缺血性视神经病变(NAION)产生不同模式的视网膜神经节细胞(RGC)损伤。我们提出了一种增强的变分自编码器(bVAE)来捕捉RGC损失的空间变化,并生成潜在空间(LS)蒙太奇图,以可视化视神经束损伤的不同程度和空间模式。此外,bVAE模型还能够跟踪RGC变薄的空间格局,并对其原因进行分类。方法:bVAE模型由一个编码器、一个显示解码器和一个升压解码器组成。编码器将输入神经节细胞层(GCL)厚度图分解为2个显示潜变量(dLVs)和8个增强潜变量(bLVs)。dlv捕获RGC减薄的主要空间模式,而显示解码器重建GCL地图并创建LS蒙太奇地图。blv增加了更精细的空间细节,提高了重建精度。使用XGBoost分析dLVs和bLVs,估计正常/异常GCL变薄并分类疾病(青光眼、ON和NAION)。本研究共纳入822名受试者的10,701张OCT黄斑扫描。结果:blv的加入提高了重建精度,输入与重建的GCL厚度图的均方根误差(RMSE)从5.55±2.29µm(仅2个dlv)降至4.02±1.61µm(2个dlv和8个blv)。然而,基于图像的结构相似指数(SSIM)保持相似(0.91±0.04),表明只有两个dlv有效地捕获了主要的GCL空间格局。在分类方面,XGBoost模型使用dlv识别GCL随时间变薄的异常空间模式的AUC为0.98。青光眼的auc为0.95,ON为0.84,NAION为0.93,blv进一步将青光眼的auc提高到0.96,ON为0.93,NAION为0.99。结论:本研究提出了一种利用bVAE模型可视化和量化视神经病变GCL变薄模式的新方法。dlv和blv的结合增强了模型捕捉关键空间特征和预测疾病进展的能力。未来的工作将集中于整合额外的图像模式,以进一步完善模型的诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the spatial patterns of retinal ganglion cell loss and progression in optic neuropathy by applying a deep learning variational autoencoder approach to optical coherence tomography.

Introduction: Glaucoma, optic neuritis (ON), and non-arteritic anterior ischemic optic neuropathy (NAION) produce distinct patterns of retinal ganglion cell (RGC) damage. We propose a booster Variational Autoencoder (bVAE) to capture spatial variations in RGC loss and generate latent space (LS) montage maps that visualize different degrees and spatial patterns of optic nerve bundle injury. Furthermore, the bVAE model is capable of tracking the spatial pattern of RGC thinning over time and classifying the underlying cause.

Methods: The bVAE model consists of an encoder, a display decoder, and a booster decoder. The encoder decomposes input ganglion cell layer (GCL) thickness maps into two display latent variables (dLVs) and eight booster latent variables (bLVs). The dLVs capture primary spatial patterns of RGC thinning, while the display decoder reconstructs the GCL map and creates the LS montage map. The bLVs add finer spatial details, improving reconstruction accuracy. XGBoost was used to analyze the dLVs and bLVs, estimating normal/abnormal GCL thinning and classifying diseases (glaucoma, ON, and NAION). A total of 10,701 OCT macular scans from 822 subjects were included in this study.

Results: Incorporating bLVs improved reconstruction accuracy, with the image-based root-mean-square error (RMSE) between input and reconstructed GCL thickness maps decreasing from 5.55 ± 2.29 µm (two dLVs only) to 4.02 ± 1.61 µm (two dLVs and eight bLVs). However, the image-based structural similarity index (SSIM) remained similar (0.91 ± 0.04), indicating that just two dLVs effectively capture the main GCL spatial patterns. For classification, the XGBoost model achieved an AUC of 0.98 for identifying abnormal spatial patterns of GCL thinning over time using the dLVs. Disease classification yielded AUCs of 0.95 for glaucoma, 0.84 for ON, and 0.93 for NAION, with bLVs further increasing the AUCs to 0.96 for glaucoma, 0.93 for ON, and 0.99 for NAION.

Conclusion: This study presents a novel approach to visualizing and quantifying GCL thinning patterns in optic neuropathies using the bVAE model. The combination of dLVs and bLVs enhances the model's ability to capture key spatial features and predict disease progression. Future work will focus on integrating additional image modalities to further refine the model's diagnostic capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信