利用有机电化学晶体管转换细胞外电子转移活动。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Yang Gao, Yuchen Zhou, Xudong Ji, Austin J Graham, Christopher M Dundas, Ismar E Miniel Mahfoud, Bailey M Tibbett, Benjamin Tan, Gina Partipilo, Ananth Dodabalapur, Jonathan Rivnay, Benjamin K Keitz
{"title":"利用有机电化学晶体管转换细胞外电子转移活动。","authors":"Yang Gao, Yuchen Zhou, Xudong Ji, Austin J Graham, Christopher M Dundas, Ismar E Miniel Mahfoud, Bailey M Tibbett, Benjamin Tan, Gina Partipilo, Ananth Dodabalapur, Jonathan Rivnay, Benjamin K Keitz","doi":"10.3791/67928","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular electron transfer (EET) is a process through which certain microorganisms can transfer electrons across their cell membranes to external electron acceptors, linking cellular metabolism to their environment. While Geobacter and Shewanella have been the primary models for EET research, emerging studies reveal that EET-active species are also associated with fermentation and the human gut microbiome. Leveraging the ability of EET to bridge biological and electronic systems, we present a protocol for using organic electrochemical transistors (OECTs) to translate microbial EET activity into easily detectable electrical signals. This system enables the use of cellular responses to external stimuli for biosensing and biocomputing applications. Specifically, we demonstrated the de-doping of the p-type poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) channel in the OECT is driven by cellular EET from Shewanella oneidensis. By transcriptionally controlling EET flux by genetic circuits, we establish the biosensing capability of this hybrid OECT system to detect chemical stimuli, such as inducer molecules. Furthermore, we introduce plasmid-based Boolean logic gates within the cells, allowing them to process environmental signals and drive current changes in the OECTs, further demonstrating the biocomputing potential of these devices. This method provides a novel interface between biological systems and electronics, enabling future high-throughput screening, biosensing, and biocomputing applications.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translating Extracellular Electron Transfer Activities with Organic Electrochemical Transistors.\",\"authors\":\"Yang Gao, Yuchen Zhou, Xudong Ji, Austin J Graham, Christopher M Dundas, Ismar E Miniel Mahfoud, Bailey M Tibbett, Benjamin Tan, Gina Partipilo, Ananth Dodabalapur, Jonathan Rivnay, Benjamin K Keitz\",\"doi\":\"10.3791/67928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular electron transfer (EET) is a process through which certain microorganisms can transfer electrons across their cell membranes to external electron acceptors, linking cellular metabolism to their environment. While Geobacter and Shewanella have been the primary models for EET research, emerging studies reveal that EET-active species are also associated with fermentation and the human gut microbiome. Leveraging the ability of EET to bridge biological and electronic systems, we present a protocol for using organic electrochemical transistors (OECTs) to translate microbial EET activity into easily detectable electrical signals. This system enables the use of cellular responses to external stimuli for biosensing and biocomputing applications. Specifically, we demonstrated the de-doping of the p-type poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) channel in the OECT is driven by cellular EET from Shewanella oneidensis. By transcriptionally controlling EET flux by genetic circuits, we establish the biosensing capability of this hybrid OECT system to detect chemical stimuli, such as inducer molecules. Furthermore, we introduce plasmid-based Boolean logic gates within the cells, allowing them to process environmental signals and drive current changes in the OECTs, further demonstrating the biocomputing potential of these devices. This method provides a novel interface between biological systems and electronics, enabling future high-throughput screening, biosensing, and biocomputing applications.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 215\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67928\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67928","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translating Extracellular Electron Transfer Activities with Organic Electrochemical Transistors.

Extracellular electron transfer (EET) is a process through which certain microorganisms can transfer electrons across their cell membranes to external electron acceptors, linking cellular metabolism to their environment. While Geobacter and Shewanella have been the primary models for EET research, emerging studies reveal that EET-active species are also associated with fermentation and the human gut microbiome. Leveraging the ability of EET to bridge biological and electronic systems, we present a protocol for using organic electrochemical transistors (OECTs) to translate microbial EET activity into easily detectable electrical signals. This system enables the use of cellular responses to external stimuli for biosensing and biocomputing applications. Specifically, we demonstrated the de-doping of the p-type poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) channel in the OECT is driven by cellular EET from Shewanella oneidensis. By transcriptionally controlling EET flux by genetic circuits, we establish the biosensing capability of this hybrid OECT system to detect chemical stimuli, such as inducer molecules. Furthermore, we introduce plasmid-based Boolean logic gates within the cells, allowing them to process environmental signals and drive current changes in the OECTs, further demonstrating the biocomputing potential of these devices. This method provides a novel interface between biological systems and electronics, enabling future high-throughput screening, biosensing, and biocomputing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信