Muhammad Abdaal Bin Iqbal, Muhammad Zubair Raza, Aziz Khan, Thabet Abdeljawad, D K Almutairi
{"title":"用分数阶微积分研究STF-mBBM方程中的高级波动动力学。","authors":"Muhammad Abdaal Bin Iqbal, Muhammad Zubair Raza, Aziz Khan, Thabet Abdeljawad, D K Almutairi","doi":"10.1038/s41598-025-90044-w","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we investigate the STF modified Benjamin-Bona-Mahony (STF-mBBM) equation, which is important in understanding wave phenomena across various technical scenarios such as ocean waves, acoustic gravity waves and cold plasma physics. We describe the fundamental properties of fractional calculus and its application to the STF-mBBM equation. Utilizing beta derivatives, we enhance our understanding of the intricate wave dynamics involved. Through the modified [Formula: see text]-expansion method (M [Formula: see text]-EM), we derive periodic, and kink singular soliton solutions and represent them graphically. We present the influence of the fractional parameter on traveling wave with 2D, 3D, surface and contour plots, providing a thorough understanding of the physical phenomena associated with the fractional model. In addition, we utilize the Hamiltonian property to analyze the chaotic dynamics of the solutions we've acquired. We perform two types of analysis using the Galilean transformation: a local sensitivity examination is conducted to see how the model responds to changes in individual input factors, and a global sensitivity examination is conducted to comprehend the correlation between the variability in the results and the variability in each input variable throughout its whole range of significance. This comprehensive approach allows us to determine traveling wave solutions effectively, offering new insights into the non-linear dynamical behavior of the system. The findings from this study are unique and significant for further exploration of the equation, offering valuable insights for future researchers.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5803"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832929/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced wave dynamics in the STF-mBBM equation using fractional calculus.\",\"authors\":\"Muhammad Abdaal Bin Iqbal, Muhammad Zubair Raza, Aziz Khan, Thabet Abdeljawad, D K Almutairi\",\"doi\":\"10.1038/s41598-025-90044-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we investigate the STF modified Benjamin-Bona-Mahony (STF-mBBM) equation, which is important in understanding wave phenomena across various technical scenarios such as ocean waves, acoustic gravity waves and cold plasma physics. We describe the fundamental properties of fractional calculus and its application to the STF-mBBM equation. Utilizing beta derivatives, we enhance our understanding of the intricate wave dynamics involved. Through the modified [Formula: see text]-expansion method (M [Formula: see text]-EM), we derive periodic, and kink singular soliton solutions and represent them graphically. We present the influence of the fractional parameter on traveling wave with 2D, 3D, surface and contour plots, providing a thorough understanding of the physical phenomena associated with the fractional model. In addition, we utilize the Hamiltonian property to analyze the chaotic dynamics of the solutions we've acquired. We perform two types of analysis using the Galilean transformation: a local sensitivity examination is conducted to see how the model responds to changes in individual input factors, and a global sensitivity examination is conducted to comprehend the correlation between the variability in the results and the variability in each input variable throughout its whole range of significance. This comprehensive approach allows us to determine traveling wave solutions effectively, offering new insights into the non-linear dynamical behavior of the system. The findings from this study are unique and significant for further exploration of the equation, offering valuable insights for future researchers.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"5803\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-90044-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90044-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Advanced wave dynamics in the STF-mBBM equation using fractional calculus.
In this article, we investigate the STF modified Benjamin-Bona-Mahony (STF-mBBM) equation, which is important in understanding wave phenomena across various technical scenarios such as ocean waves, acoustic gravity waves and cold plasma physics. We describe the fundamental properties of fractional calculus and its application to the STF-mBBM equation. Utilizing beta derivatives, we enhance our understanding of the intricate wave dynamics involved. Through the modified [Formula: see text]-expansion method (M [Formula: see text]-EM), we derive periodic, and kink singular soliton solutions and represent them graphically. We present the influence of the fractional parameter on traveling wave with 2D, 3D, surface and contour plots, providing a thorough understanding of the physical phenomena associated with the fractional model. In addition, we utilize the Hamiltonian property to analyze the chaotic dynamics of the solutions we've acquired. We perform two types of analysis using the Galilean transformation: a local sensitivity examination is conducted to see how the model responds to changes in individual input factors, and a global sensitivity examination is conducted to comprehend the correlation between the variability in the results and the variability in each input variable throughout its whole range of significance. This comprehensive approach allows us to determine traveling wave solutions effectively, offering new insights into the non-linear dynamical behavior of the system. The findings from this study are unique and significant for further exploration of the equation, offering valuable insights for future researchers.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.