[制约钝化剂对紫色土壤砷、镉污染修复效果的土壤性质因素分析]。

Q2 Environmental Science
De-Cai Jiang, Zhen-Mao Jiang, Shi-Qiang Wei
{"title":"[制约钝化剂对紫色土壤砷、镉污染修复效果的土壤性质因素分析]。","authors":"De-Cai Jiang, Zhen-Mao Jiang, Shi-Qiang Wei","doi":"10.13227/j.hjkx.202402102","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of passivating agents on Cd and As is closely related to soil properties. Optimizing passivating agents that adapt to soil properties is the key basis for the application of passivation technology. This study uses eight types of purple soils with widely different properties as test soils, uses indoor culture experiments, sets different pollution conditions, and simultaneously compares the passivation rates of cadmium (Cd) and arsenic (As) by seven common passivators. Additionally, combined with the measurement of soil physical and chemical properties, the relationship between passivation efficiency and soil properties was explored. The results showed that among the seven common passivators tested, calcium oxide, organic fertilizer, silicon calcium magnesium fertilizer, humic acid, and hydroxyapatite had a significant passivation effect on purple soil Cd, and iron oxide, silicon calcium magnesium fertilizer, hydroxyapatite, and humic acid had a passivating effect on As. Only three passivating agents, calcium silicon magnesium fertilizer, hydroxyapatite, and humic acid, had a passivating effect on both Cd and As. Great differences exist in the key soil property factors that determined the passivation efficiency of specific passivators: soil organic matter, clay content, and total potassium were significantly positively correlated with the passivation rate of soil Cd by the tested passivators; soil pH, free iron oxide, free manganese oxide, and total phosphorus were significantly negatively correlated with them; soil CEC, free manganese oxide, and soil total As were significantly positively correlated with the As passivation rate of the tested passivators; and the content of soil clay particles was significantly negatively correlated with it. The study established the optimal multiple linear regression model between the passivation efficiency of passivating agents Cd and As and the soil properties and pollution characteristics of purple soil. The model quantitatively reflects the relationship between the passivation efficiency of heavy metals and soil properties and can be used to predict and optimize adaptation accordingly. Highly efficient passivators with different soil properties provide a scientific basis for the safe use of regionally contaminated farmland.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 2","pages":"1130-1144"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Analysis of Soil Property Factors Restricting the Remediation Effect of Passivators on Arsenic and Cadmium Pollution in Purple Soil].\",\"authors\":\"De-Cai Jiang, Zhen-Mao Jiang, Shi-Qiang Wei\",\"doi\":\"10.13227/j.hjkx.202402102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effect of passivating agents on Cd and As is closely related to soil properties. Optimizing passivating agents that adapt to soil properties is the key basis for the application of passivation technology. This study uses eight types of purple soils with widely different properties as test soils, uses indoor culture experiments, sets different pollution conditions, and simultaneously compares the passivation rates of cadmium (Cd) and arsenic (As) by seven common passivators. Additionally, combined with the measurement of soil physical and chemical properties, the relationship between passivation efficiency and soil properties was explored. The results showed that among the seven common passivators tested, calcium oxide, organic fertilizer, silicon calcium magnesium fertilizer, humic acid, and hydroxyapatite had a significant passivation effect on purple soil Cd, and iron oxide, silicon calcium magnesium fertilizer, hydroxyapatite, and humic acid had a passivating effect on As. Only three passivating agents, calcium silicon magnesium fertilizer, hydroxyapatite, and humic acid, had a passivating effect on both Cd and As. Great differences exist in the key soil property factors that determined the passivation efficiency of specific passivators: soil organic matter, clay content, and total potassium were significantly positively correlated with the passivation rate of soil Cd by the tested passivators; soil pH, free iron oxide, free manganese oxide, and total phosphorus were significantly negatively correlated with them; soil CEC, free manganese oxide, and soil total As were significantly positively correlated with the As passivation rate of the tested passivators; and the content of soil clay particles was significantly negatively correlated with it. The study established the optimal multiple linear regression model between the passivation efficiency of passivating agents Cd and As and the soil properties and pollution characteristics of purple soil. The model quantitatively reflects the relationship between the passivation efficiency of heavy metals and soil properties and can be used to predict and optimize adaptation accordingly. Highly efficient passivators with different soil properties provide a scientific basis for the safe use of regionally contaminated farmland.</p>\",\"PeriodicalId\":35937,\"journal\":{\"name\":\"环境科学\",\"volume\":\"46 2\",\"pages\":\"1130-1144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202402102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202402102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

钝化剂对镉和砷的影响与土壤性质密切相关。优化适合土壤性质的钝化剂是钝化技术应用的关键基础。本研究以8种性质差异较大的紫色土为试验土,采用室内培养实验,设置不同的污染条件,同时比较7种常用钝化剂对镉(Cd)和砷(as)的钝化率。并结合土壤理化性质的测定,探讨了钝化效率与土壤性质之间的关系。结果表明,在7种常用钝化剂中,氧化钙、有机肥、硅钙镁肥、腐植酸和羟基磷灰石对紫色土壤镉有显著的钝化作用,氧化铁、硅钙镁肥、羟基磷灰石和腐植酸对砷有显著的钝化作用。只有钙硅镁肥、羟基磷灰石和腐植酸三种钝化剂对镉和砷均有钝化作用。决定特定钝化剂钝化效果的关键土壤性质因素存在较大差异:土壤pH、游离氧化铁、游离氧化锰、总磷与土壤镉钝化率呈显著负相关;土壤CEC、游离氧化锰、土壤总砷含量与所试钝化剂的砷钝化率呈显著正相关,土壤粘粒含量与砷钝化率呈显著负相关。本研究建立了钝化剂Cd和As的钝化效率与紫色土土壤性质和污染特征之间的最优多元线性回归模型。该模型定量反映了重金属钝化效率与土壤性质之间的关系,可用于预测和优化土壤适应性。不同土壤性质的高效钝化剂为区域污染农田的安全利用提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Analysis of Soil Property Factors Restricting the Remediation Effect of Passivators on Arsenic and Cadmium Pollution in Purple Soil].

The effect of passivating agents on Cd and As is closely related to soil properties. Optimizing passivating agents that adapt to soil properties is the key basis for the application of passivation technology. This study uses eight types of purple soils with widely different properties as test soils, uses indoor culture experiments, sets different pollution conditions, and simultaneously compares the passivation rates of cadmium (Cd) and arsenic (As) by seven common passivators. Additionally, combined with the measurement of soil physical and chemical properties, the relationship between passivation efficiency and soil properties was explored. The results showed that among the seven common passivators tested, calcium oxide, organic fertilizer, silicon calcium magnesium fertilizer, humic acid, and hydroxyapatite had a significant passivation effect on purple soil Cd, and iron oxide, silicon calcium magnesium fertilizer, hydroxyapatite, and humic acid had a passivating effect on As. Only three passivating agents, calcium silicon magnesium fertilizer, hydroxyapatite, and humic acid, had a passivating effect on both Cd and As. Great differences exist in the key soil property factors that determined the passivation efficiency of specific passivators: soil organic matter, clay content, and total potassium were significantly positively correlated with the passivation rate of soil Cd by the tested passivators; soil pH, free iron oxide, free manganese oxide, and total phosphorus were significantly negatively correlated with them; soil CEC, free manganese oxide, and soil total As were significantly positively correlated with the As passivation rate of the tested passivators; and the content of soil clay particles was significantly negatively correlated with it. The study established the optimal multiple linear regression model between the passivation efficiency of passivating agents Cd and As and the soil properties and pollution characteristics of purple soil. The model quantitatively reflects the relationship between the passivation efficiency of heavy metals and soil properties and can be used to predict and optimize adaptation accordingly. Highly efficient passivators with different soil properties provide a scientific basis for the safe use of regionally contaminated farmland.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信