Jingyun Wang, Reed M Jost, Brooke A Koritala, Eileen E Birch
{"title":"儿童期与迟发性调节性内斜视的远视儿童眼部生物特征和屈光不正的纵向发展。","authors":"Jingyun Wang, Reed M Jost, Brooke A Koritala, Eileen E Birch","doi":"10.1111/opo.13468","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To examine the developmental patterns of refractive error and optical components in hyperopic children with infantile (onset ≤12 months of age) accommodative or late-onset (18-48 months of age) accommodative esotropia.</p><p><strong>Methods: </strong>This prospective longitudinal study included children with infantile (n = 34) or late-onset (n = 63) accommodative esotropia. Axial length (AL), anterior chamber depth (ACD), lens thickness (LT) and keratometry (K1, K2) were obtained with a Lenstar LS 900. Lenstar measures were recorded <6 months after cycloplegic spherical equivalent refraction (SER) was derived. An initial examination was conducted at 5.8 ± 1.5 years of age, with a follow-up duration of 4.8 ± 0.8 years. A linear mixed-effects model was used to estimate the rate of individual development for each ocular component and SER, and to compare the two groups.</p><p><strong>Results: </strong>All biometric components changed with age. The rates of change with age for SER and AL were significantly different between the infantile and late-onset groups (SER: -0.18 vs. -0.12D/year, p < 0.001; AL: 0.16 vs. 0.14 mm/year, p < 0.01). The rate of change with age of the AL/CR ratio was significantly different between the infantile and late-onset groups (0.019 vs. 0.016, p < 0.001). No significant differences in the rates of change in ACD, LT, K1 or K2 were identified.</p><p><strong>Conclusions: </strong>Major ocular biometric components in children continue to mature in both infantile and late-onset accommodative esotropia. Annual change in axial length is smaller in late-onset accommodative esotropia than for infantile accommodative esotropia, consistent with less change in the SER with age.</p>","PeriodicalId":19522,"journal":{"name":"Ophthalmic and Physiological Optics","volume":" ","pages":"810-819"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401513/pdf/","citationCount":"0","resultStr":"{\"title\":\"Longitudinal development of ocular biometric components and refractive error in hyperopic children with infantile versus late-onset accommodative esotropia.\",\"authors\":\"Jingyun Wang, Reed M Jost, Brooke A Koritala, Eileen E Birch\",\"doi\":\"10.1111/opo.13468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To examine the developmental patterns of refractive error and optical components in hyperopic children with infantile (onset ≤12 months of age) accommodative or late-onset (18-48 months of age) accommodative esotropia.</p><p><strong>Methods: </strong>This prospective longitudinal study included children with infantile (n = 34) or late-onset (n = 63) accommodative esotropia. Axial length (AL), anterior chamber depth (ACD), lens thickness (LT) and keratometry (K1, K2) were obtained with a Lenstar LS 900. Lenstar measures were recorded <6 months after cycloplegic spherical equivalent refraction (SER) was derived. An initial examination was conducted at 5.8 ± 1.5 years of age, with a follow-up duration of 4.8 ± 0.8 years. A linear mixed-effects model was used to estimate the rate of individual development for each ocular component and SER, and to compare the two groups.</p><p><strong>Results: </strong>All biometric components changed with age. The rates of change with age for SER and AL were significantly different between the infantile and late-onset groups (SER: -0.18 vs. -0.12D/year, p < 0.001; AL: 0.16 vs. 0.14 mm/year, p < 0.01). The rate of change with age of the AL/CR ratio was significantly different between the infantile and late-onset groups (0.019 vs. 0.016, p < 0.001). No significant differences in the rates of change in ACD, LT, K1 or K2 were identified.</p><p><strong>Conclusions: </strong>Major ocular biometric components in children continue to mature in both infantile and late-onset accommodative esotropia. Annual change in axial length is smaller in late-onset accommodative esotropia than for infantile accommodative esotropia, consistent with less change in the SER with age.</p>\",\"PeriodicalId\":19522,\"journal\":{\"name\":\"Ophthalmic and Physiological Optics\",\"volume\":\" \",\"pages\":\"810-819\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401513/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmic and Physiological Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/opo.13468\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmic and Physiological Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/opo.13468","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
目的:探讨婴儿期(起病≤12月龄)和迟发性(18-48月龄)调节性内斜视远视儿童屈光不正和光学成分的发育模式。方法:这项前瞻性纵向研究纳入了婴儿期(n = 34)或晚发性(n = 63)调节性内斜视儿童。用Lenstar LS 900测量眼轴长(AL)、前房深度(ACD)、晶状体厚度(LT)和角膜屈光度(K1、K2)。结果:各生物特征成分随年龄变化。婴儿和晚发型内斜视组SER和AL随年龄的变化率有显著差异(SER: -0.18和-0.12D/年,p)。结论:儿童主要眼部生物特征成分在婴儿和晚发型调节性内斜视中都继续成熟。迟发性调节性内斜视的眼轴长度年变化小于婴儿调节性内斜视,这与SER随年龄的变化较小一致。
Longitudinal development of ocular biometric components and refractive error in hyperopic children with infantile versus late-onset accommodative esotropia.
Purpose: To examine the developmental patterns of refractive error and optical components in hyperopic children with infantile (onset ≤12 months of age) accommodative or late-onset (18-48 months of age) accommodative esotropia.
Methods: This prospective longitudinal study included children with infantile (n = 34) or late-onset (n = 63) accommodative esotropia. Axial length (AL), anterior chamber depth (ACD), lens thickness (LT) and keratometry (K1, K2) were obtained with a Lenstar LS 900. Lenstar measures were recorded <6 months after cycloplegic spherical equivalent refraction (SER) was derived. An initial examination was conducted at 5.8 ± 1.5 years of age, with a follow-up duration of 4.8 ± 0.8 years. A linear mixed-effects model was used to estimate the rate of individual development for each ocular component and SER, and to compare the two groups.
Results: All biometric components changed with age. The rates of change with age for SER and AL were significantly different between the infantile and late-onset groups (SER: -0.18 vs. -0.12D/year, p < 0.001; AL: 0.16 vs. 0.14 mm/year, p < 0.01). The rate of change with age of the AL/CR ratio was significantly different between the infantile and late-onset groups (0.019 vs. 0.016, p < 0.001). No significant differences in the rates of change in ACD, LT, K1 or K2 were identified.
Conclusions: Major ocular biometric components in children continue to mature in both infantile and late-onset accommodative esotropia. Annual change in axial length is smaller in late-onset accommodative esotropia than for infantile accommodative esotropia, consistent with less change in the SER with age.
期刊介绍:
Ophthalmic & Physiological Optics, first published in 1925, is a leading international interdisciplinary journal that addresses basic and applied questions pertinent to contemporary research in vision science and optometry.
OPO publishes original research papers, technical notes, reviews and letters and will interest researchers, educators and clinicians concerned with the development, use and restoration of vision.