{"title":"研究基于生成对抗网络的深度学习在减少心脏磁共振运动伪影中的应用。","authors":"Ze-Peng Ma, Yue-Ming Zhu, Xiao-Dan Zhang, Yong-Xia Zhao, Wei Zheng, Shuang-Rui Yuan, Gao-Yang Li, Tian-Le Zhang","doi":"10.2147/JMDH.S492163","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the effectiveness of deep learning technology based on generative adversarial networks (GANs) in reducing motion artifacts in cardiac magnetic resonance (CMR) cine sequences.</p><p><strong>Methods: </strong>The training and testing datasets consisted of 2000 and 200 pairs of clear and blurry images, respectively, acquired through simulated motion artifacts in CMR cine sequences. These datasets were used to establish and train a deep learning GAN model. To assess the efficacy of the deep learning network in mitigating motion artifacts, 100 images with simulated motion artifacts and 37 images with real-world motion artifacts encountered in clinical practice were selected. Image quality pre- and post-optimization was assessed using metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Leningrad Focus Measure, and a 5-point Likert scale.</p><p><strong>Results: </strong>After GAN optimization, notable improvements were observed in the PSNR, SSIM, and focus measure metrics for the 100 images with simulated artifacts. These metrics increased from initial values of 23.85±2.85, 0.71±0.08, and 4.56±0.67, respectively, to 27.91±1.74, 0.83±0.05, and 7.74±0.39 post-optimization. Additionally, the subjective assessment scores significantly improved from 2.44±1.08 to 4.44±0.66 (P<0.001). For the 37 images with real-world artifacts, the Tenengrad Focus Measure showed a significant enhancement, rising from 6.06±0.91 to 10.13±0.48 after artifact removal. Subjective ratings also increased from 3.03±0.73 to 3.73±0.87 (P<0.001).</p><p><strong>Conclusion: </strong>GAN-based deep learning technology effectively reduces motion artifacts present in CMR cine images, demonstrating significant potential for clinical application in optimizing CMR motion artifact management.</p>","PeriodicalId":16357,"journal":{"name":"Journal of Multidisciplinary Healthcare","volume":"18 ","pages":"787-799"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the Use of Generative Adversarial Networks-Based Deep Learning for Reducing Motion Artifacts in Cardiac Magnetic Resonance.\",\"authors\":\"Ze-Peng Ma, Yue-Ming Zhu, Xiao-Dan Zhang, Yong-Xia Zhao, Wei Zheng, Shuang-Rui Yuan, Gao-Yang Li, Tian-Le Zhang\",\"doi\":\"10.2147/JMDH.S492163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To evaluate the effectiveness of deep learning technology based on generative adversarial networks (GANs) in reducing motion artifacts in cardiac magnetic resonance (CMR) cine sequences.</p><p><strong>Methods: </strong>The training and testing datasets consisted of 2000 and 200 pairs of clear and blurry images, respectively, acquired through simulated motion artifacts in CMR cine sequences. These datasets were used to establish and train a deep learning GAN model. To assess the efficacy of the deep learning network in mitigating motion artifacts, 100 images with simulated motion artifacts and 37 images with real-world motion artifacts encountered in clinical practice were selected. Image quality pre- and post-optimization was assessed using metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Leningrad Focus Measure, and a 5-point Likert scale.</p><p><strong>Results: </strong>After GAN optimization, notable improvements were observed in the PSNR, SSIM, and focus measure metrics for the 100 images with simulated artifacts. These metrics increased from initial values of 23.85±2.85, 0.71±0.08, and 4.56±0.67, respectively, to 27.91±1.74, 0.83±0.05, and 7.74±0.39 post-optimization. Additionally, the subjective assessment scores significantly improved from 2.44±1.08 to 4.44±0.66 (P<0.001). For the 37 images with real-world artifacts, the Tenengrad Focus Measure showed a significant enhancement, rising from 6.06±0.91 to 10.13±0.48 after artifact removal. Subjective ratings also increased from 3.03±0.73 to 3.73±0.87 (P<0.001).</p><p><strong>Conclusion: </strong>GAN-based deep learning technology effectively reduces motion artifacts present in CMR cine images, demonstrating significant potential for clinical application in optimizing CMR motion artifact management.</p>\",\"PeriodicalId\":16357,\"journal\":{\"name\":\"Journal of Multidisciplinary Healthcare\",\"volume\":\"18 \",\"pages\":\"787-799\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Healthcare\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JMDH.S492163\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JMDH.S492163","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Investigating the Use of Generative Adversarial Networks-Based Deep Learning for Reducing Motion Artifacts in Cardiac Magnetic Resonance.
Objective: To evaluate the effectiveness of deep learning technology based on generative adversarial networks (GANs) in reducing motion artifacts in cardiac magnetic resonance (CMR) cine sequences.
Methods: The training and testing datasets consisted of 2000 and 200 pairs of clear and blurry images, respectively, acquired through simulated motion artifacts in CMR cine sequences. These datasets were used to establish and train a deep learning GAN model. To assess the efficacy of the deep learning network in mitigating motion artifacts, 100 images with simulated motion artifacts and 37 images with real-world motion artifacts encountered in clinical practice were selected. Image quality pre- and post-optimization was assessed using metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Leningrad Focus Measure, and a 5-point Likert scale.
Results: After GAN optimization, notable improvements were observed in the PSNR, SSIM, and focus measure metrics for the 100 images with simulated artifacts. These metrics increased from initial values of 23.85±2.85, 0.71±0.08, and 4.56±0.67, respectively, to 27.91±1.74, 0.83±0.05, and 7.74±0.39 post-optimization. Additionally, the subjective assessment scores significantly improved from 2.44±1.08 to 4.44±0.66 (P<0.001). For the 37 images with real-world artifacts, the Tenengrad Focus Measure showed a significant enhancement, rising from 6.06±0.91 to 10.13±0.48 after artifact removal. Subjective ratings also increased from 3.03±0.73 to 3.73±0.87 (P<0.001).
Conclusion: GAN-based deep learning technology effectively reduces motion artifacts present in CMR cine images, demonstrating significant potential for clinical application in optimizing CMR motion artifact management.
期刊介绍:
The Journal of Multidisciplinary Healthcare (JMDH) aims to represent and publish research in healthcare areas delivered by practitioners of different disciplines. This includes studies and reviews conducted by multidisciplinary teams as well as research which evaluates or reports the results or conduct of such teams or healthcare processes in general. The journal covers a very wide range of areas and we welcome submissions from practitioners at all levels and from all over the world. Good healthcare is not bounded by person, place or time and the journal aims to reflect this. The JMDH is published as an open-access journal to allow this wide range of practical, patient relevant research to be immediately available to practitioners who can access and use it immediately upon publication.