超越CT身体成分分析:使用风格转移将基于CT的全自动身体成分分析引入t2加权MRI序列。

IF 7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Investigative Radiology Pub Date : 2025-08-01 Epub Date: 2025-02-18 DOI:10.1097/RLI.0000000000001162
Johannes Haubold, Olivia Barbara Pollok, Mathias Holtkamp, Luca Salhöfer, Cynthia Sabrina Schmidt, Christian Bojahr, Jannis Straus, Benedikt Michael Schaarschmidt, Katarzyna Borys, Judith Kohnke, Yutong Wen, Marcel Opitz, Lale Umutlu, Michael Forsting, Christoph M Friedrich, Felix Nensa, René Hosch
{"title":"超越CT身体成分分析:使用风格转移将基于CT的全自动身体成分分析引入t2加权MRI序列。","authors":"Johannes Haubold, Olivia Barbara Pollok, Mathias Holtkamp, Luca Salhöfer, Cynthia Sabrina Schmidt, Christian Bojahr, Jannis Straus, Benedikt Michael Schaarschmidt, Katarzyna Borys, Judith Kohnke, Yutong Wen, Marcel Opitz, Lale Umutlu, Michael Forsting, Christoph M Friedrich, Felix Nensa, René Hosch","doi":"10.1097/RLI.0000000000001162","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Deep learning for body composition analysis (BCA) is gaining traction in clinical research, offering rapid and automated ways to measure body features like muscle or fat volume. However, most current methods prioritize computed tomography (CT) over magnetic resonance imaging (MRI). This study presents a deep learning approach for automatic BCA using MR T2-weighted sequences.</p><p><strong>Methods: </strong>Initial BCA segmentations (10 body regions and 4 body parts) were generated by mapping CT segmentations from body and organ analysis (BOA) model to synthetic MR images created using an in-house trained CycleGAN. In total, 30 synthetic data pairs were used to train an initial nnU-Net V2 in 3D, and this preliminary model was then applied to segment 120 real T2-weighted MRI sequences from 120 patients (46% female) with a median age of 56 (interquartile range, 17.75), generating early segmentation proposals. These proposals were refined by human annotators, and nnU-Net V2 2D and 3D models were trained using 5-fold cross-validation on this optimized dataset of real MR images. Performance was evaluated using Sørensen-Dice, Surface Dice, and Hausdorff Distance metrics including 95% confidence intervals for cross-validation and ensemble models.</p><p><strong>Results: </strong>The 3D ensemble segmentation model achieved the highest Dice scores for the body region classes: bone 0.926 (95% confidence interval [CI], 0.914-0.937), muscle 0.968 (95% CI, 0.961-0.975), subcutaneous fat 0.98 (95% CI, 0.971-0.986), nervous system 0.973 (95% CI, 0.965-0.98), thoracic cavity 0.978 (95% CI, 0.969-0.984), abdominal cavity 0.989 (95% CI, 0.986-0.991), mediastinum 0.92 (95% CI, 0.901-0.936), pericardium 0.945 (95% CI, 0.924-0.96), brain 0.966 (95% CI, 0.927-0.989), and glands 0.905 (95% CI, 0.886-0.921). Furthermore, body part 2D ensemble model reached the highest Dice scores for all labels: arms 0.952 (95% CI, 0.937-0.965), head + neck 0.965 (95% CI, 0.953-0.976), legs 0.978 (95% CI, 0.968-0.988), and torso 0.99 (95% CI, 0.988-0.991). The overall average Dice across body parts (2D = 0.971, 3D = 0.969, P = ns) and body regions (2D = 0.935, 3D = 0.955, P < 0.001) ensemble models indicates stable performance across all classes.</p><p><strong>Conclusions: </strong>The presented approach facilitates efficient and automated extraction of BCA parameters from T2-weighted MRI sequences, providing precise and detailed body composition information across various regions and body parts.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"552-559"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences.\",\"authors\":\"Johannes Haubold, Olivia Barbara Pollok, Mathias Holtkamp, Luca Salhöfer, Cynthia Sabrina Schmidt, Christian Bojahr, Jannis Straus, Benedikt Michael Schaarschmidt, Katarzyna Borys, Judith Kohnke, Yutong Wen, Marcel Opitz, Lale Umutlu, Michael Forsting, Christoph M Friedrich, Felix Nensa, René Hosch\",\"doi\":\"10.1097/RLI.0000000000001162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Deep learning for body composition analysis (BCA) is gaining traction in clinical research, offering rapid and automated ways to measure body features like muscle or fat volume. However, most current methods prioritize computed tomography (CT) over magnetic resonance imaging (MRI). This study presents a deep learning approach for automatic BCA using MR T2-weighted sequences.</p><p><strong>Methods: </strong>Initial BCA segmentations (10 body regions and 4 body parts) were generated by mapping CT segmentations from body and organ analysis (BOA) model to synthetic MR images created using an in-house trained CycleGAN. In total, 30 synthetic data pairs were used to train an initial nnU-Net V2 in 3D, and this preliminary model was then applied to segment 120 real T2-weighted MRI sequences from 120 patients (46% female) with a median age of 56 (interquartile range, 17.75), generating early segmentation proposals. These proposals were refined by human annotators, and nnU-Net V2 2D and 3D models were trained using 5-fold cross-validation on this optimized dataset of real MR images. Performance was evaluated using Sørensen-Dice, Surface Dice, and Hausdorff Distance metrics including 95% confidence intervals for cross-validation and ensemble models.</p><p><strong>Results: </strong>The 3D ensemble segmentation model achieved the highest Dice scores for the body region classes: bone 0.926 (95% confidence interval [CI], 0.914-0.937), muscle 0.968 (95% CI, 0.961-0.975), subcutaneous fat 0.98 (95% CI, 0.971-0.986), nervous system 0.973 (95% CI, 0.965-0.98), thoracic cavity 0.978 (95% CI, 0.969-0.984), abdominal cavity 0.989 (95% CI, 0.986-0.991), mediastinum 0.92 (95% CI, 0.901-0.936), pericardium 0.945 (95% CI, 0.924-0.96), brain 0.966 (95% CI, 0.927-0.989), and glands 0.905 (95% CI, 0.886-0.921). Furthermore, body part 2D ensemble model reached the highest Dice scores for all labels: arms 0.952 (95% CI, 0.937-0.965), head + neck 0.965 (95% CI, 0.953-0.976), legs 0.978 (95% CI, 0.968-0.988), and torso 0.99 (95% CI, 0.988-0.991). The overall average Dice across body parts (2D = 0.971, 3D = 0.969, P = ns) and body regions (2D = 0.935, 3D = 0.955, P < 0.001) ensemble models indicates stable performance across all classes.</p><p><strong>Conclusions: </strong>The presented approach facilitates efficient and automated extraction of BCA parameters from T2-weighted MRI sequences, providing precise and detailed body composition information across various regions and body parts.</p>\",\"PeriodicalId\":14486,\"journal\":{\"name\":\"Investigative Radiology\",\"volume\":\" \",\"pages\":\"552-559\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RLI.0000000000001162\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001162","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:身体成分分析的深度学习(BCA)在临床研究中越来越受到关注,它提供了快速和自动化的方法来测量肌肉或脂肪体积等身体特征。然而,目前大多数方法优先考虑计算机断层扫描(CT)而不是磁共振成像(MRI)。本研究提出了一种基于MR t2加权序列的自动BCA深度学习方法。方法:将身体和器官分析(BOA)模型的CT分割映射到使用内部训练的CycleGAN生成的合成MR图像,生成初始BCA分割(10个身体区域和4个身体部位)。总共使用30对合成数据对在3D中训练初始nnU-Net V2,然后将该初步模型应用于120名患者(46%为女性)的120个真实t2加权MRI序列,中位年龄为56岁(四分位数间距为17.75),生成早期分割建议。这些建议由人类注释者改进,并在优化后的真实MR图像数据集上使用5倍交叉验证训练nnU-Net V2 2D和3D模型。使用Sørensen-Dice、Surface Dice和Hausdorff Distance指标对性能进行评估,这些指标包括交叉验证和集成模型的95%置信区间。结果:三维集成分割模型在身体区域类上的Dice得分最高;骨0.926(95%可信区间,0.914-0.937)、肌肉0.968 (95% CI, 0.961-0.975)、皮下脂肪0.98 (95% CI, 0.971-0.986)、神经系统0.973 (95% CI, 0.965-0.98)、胸腔0.978 (95% CI, 0.969-0.984)、腹腔0.989 (95% CI, 0.986-0.991)、纵隔0.92 (95% CI, 0.901-0.936)、心包0.945 (95% CI, 0.924-0.96)、脑0.966 (95% CI, 0.927-0.989)、腺体0.905 (95% CI, 0.886-0.921)。此外,身体部位2D集成模型在所有标签上的Dice得分最高:手臂0.952 (95% CI, 0.937-0.965),头部+颈部0.965 (95% CI, 0.953-0.976),腿部0.978 (95% CI, 0.968-0.988),躯干0.99 (95% CI, 0.988-0.991)。整体平均骰子在身体部位(2D = 0.971, 3D = 0.969, P = ns)和身体区域(2D = 0.935, 3D = 0.955, P < 0.001)集成模型表明稳定的性能在所有类别。结论:本文提出的方法能够高效、自动地从t2加权MRI序列中提取BCA参数,提供准确、详细的身体各区域和身体部位的成分信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences.

Objectives: Deep learning for body composition analysis (BCA) is gaining traction in clinical research, offering rapid and automated ways to measure body features like muscle or fat volume. However, most current methods prioritize computed tomography (CT) over magnetic resonance imaging (MRI). This study presents a deep learning approach for automatic BCA using MR T2-weighted sequences.

Methods: Initial BCA segmentations (10 body regions and 4 body parts) were generated by mapping CT segmentations from body and organ analysis (BOA) model to synthetic MR images created using an in-house trained CycleGAN. In total, 30 synthetic data pairs were used to train an initial nnU-Net V2 in 3D, and this preliminary model was then applied to segment 120 real T2-weighted MRI sequences from 120 patients (46% female) with a median age of 56 (interquartile range, 17.75), generating early segmentation proposals. These proposals were refined by human annotators, and nnU-Net V2 2D and 3D models were trained using 5-fold cross-validation on this optimized dataset of real MR images. Performance was evaluated using Sørensen-Dice, Surface Dice, and Hausdorff Distance metrics including 95% confidence intervals for cross-validation and ensemble models.

Results: The 3D ensemble segmentation model achieved the highest Dice scores for the body region classes: bone 0.926 (95% confidence interval [CI], 0.914-0.937), muscle 0.968 (95% CI, 0.961-0.975), subcutaneous fat 0.98 (95% CI, 0.971-0.986), nervous system 0.973 (95% CI, 0.965-0.98), thoracic cavity 0.978 (95% CI, 0.969-0.984), abdominal cavity 0.989 (95% CI, 0.986-0.991), mediastinum 0.92 (95% CI, 0.901-0.936), pericardium 0.945 (95% CI, 0.924-0.96), brain 0.966 (95% CI, 0.927-0.989), and glands 0.905 (95% CI, 0.886-0.921). Furthermore, body part 2D ensemble model reached the highest Dice scores for all labels: arms 0.952 (95% CI, 0.937-0.965), head + neck 0.965 (95% CI, 0.953-0.976), legs 0.978 (95% CI, 0.968-0.988), and torso 0.99 (95% CI, 0.988-0.991). The overall average Dice across body parts (2D = 0.971, 3D = 0.969, P = ns) and body regions (2D = 0.935, 3D = 0.955, P < 0.001) ensemble models indicates stable performance across all classes.

Conclusions: The presented approach facilitates efficient and automated extraction of BCA parameters from T2-weighted MRI sequences, providing precise and detailed body composition information across various regions and body parts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Investigative Radiology
Investigative Radiology 医学-核医学
CiteScore
15.10
自引率
16.40%
发文量
188
审稿时长
4-8 weeks
期刊介绍: Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信