{"title":"一种简单的围产期哺乳动物卵巢免疫组织化学方法揭示了DNA损伤和失配引起的卵母细胞凋亡的不同动力学。","authors":"Hiroshi Kogo, Akiko Iizuka-Kogo, Hanako Yamamoto, Maiko Ikezawa, Yukiko Tajika, Toshiyuki Matsuzaki","doi":"10.1007/s00418-025-02358-5","DOIUrl":null,"url":null,"abstract":"<p><p>Oocytes with meiotic defects are assumed to be eliminated by apoptosis in the perinatal period. However, oocyte apoptosis caused by meiotic defects has not been well analyzed, partly because of the great technical demands of tissue sectioning perinatal ovaries. In the present study, we applied a squash method for immunohistochemical analysis of perinatal mouse ovaries as a substitute for tissue sectioning. As a result, we could show different kinetics of apoptosis caused by DMC1- and SPO11-deficiencies, indicating that DNA damage-induced apoptosis precedes asynapsis-induced apoptosis in mouse oocytes. Double-mutant analysis revealed that only asynapsis-induced apoptosis was significantly dependent on HORMAD2. The present method is simple, easy, and able to analyze a sufficient number of oocytes to detect infrequent events in a single specimen, accelerating detailed immunohistochemical analyses of mammalian ovaries during the fetal and perinatal periods.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"163 1","pages":"32"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple immunohistochemical method for perinatal mammalian ovaries revealed different kinetics of oocyte apoptosis caused by DNA damage and asynapsis.\",\"authors\":\"Hiroshi Kogo, Akiko Iizuka-Kogo, Hanako Yamamoto, Maiko Ikezawa, Yukiko Tajika, Toshiyuki Matsuzaki\",\"doi\":\"10.1007/s00418-025-02358-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oocytes with meiotic defects are assumed to be eliminated by apoptosis in the perinatal period. However, oocyte apoptosis caused by meiotic defects has not been well analyzed, partly because of the great technical demands of tissue sectioning perinatal ovaries. In the present study, we applied a squash method for immunohistochemical analysis of perinatal mouse ovaries as a substitute for tissue sectioning. As a result, we could show different kinetics of apoptosis caused by DMC1- and SPO11-deficiencies, indicating that DNA damage-induced apoptosis precedes asynapsis-induced apoptosis in mouse oocytes. Double-mutant analysis revealed that only asynapsis-induced apoptosis was significantly dependent on HORMAD2. The present method is simple, easy, and able to analyze a sufficient number of oocytes to detect infrequent events in a single specimen, accelerating detailed immunohistochemical analyses of mammalian ovaries during the fetal and perinatal periods.</p>\",\"PeriodicalId\":13107,\"journal\":{\"name\":\"Histochemistry and Cell Biology\",\"volume\":\"163 1\",\"pages\":\"32\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00418-025-02358-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-025-02358-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A simple immunohistochemical method for perinatal mammalian ovaries revealed different kinetics of oocyte apoptosis caused by DNA damage and asynapsis.
Oocytes with meiotic defects are assumed to be eliminated by apoptosis in the perinatal period. However, oocyte apoptosis caused by meiotic defects has not been well analyzed, partly because of the great technical demands of tissue sectioning perinatal ovaries. In the present study, we applied a squash method for immunohistochemical analysis of perinatal mouse ovaries as a substitute for tissue sectioning. As a result, we could show different kinetics of apoptosis caused by DMC1- and SPO11-deficiencies, indicating that DNA damage-induced apoptosis precedes asynapsis-induced apoptosis in mouse oocytes. Double-mutant analysis revealed that only asynapsis-induced apoptosis was significantly dependent on HORMAD2. The present method is simple, easy, and able to analyze a sufficient number of oocytes to detect infrequent events in a single specimen, accelerating detailed immunohistochemical analyses of mammalian ovaries during the fetal and perinatal periods.
期刊介绍:
Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.