视觉加速能引起倾斜的感觉吗?

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Laurence R Harris, Björn Jörges, Nils Bury, Meaghan McManus, Ambika Bansal, Robert S Allison, Michael Jenkin
{"title":"视觉加速能引起倾斜的感觉吗?","authors":"Laurence R Harris, Björn Jörges, Nils Bury, Meaghan McManus, Ambika Bansal, Robert S Allison, Michael Jenkin","doi":"10.1007/s00221-025-07023-w","DOIUrl":null,"url":null,"abstract":"<p><p>Under the microgravity of the International Space Station, many of the normal processes that determine the perceptual upright on Earth are disrupted. For example, somatosensory cues are absent and an applied physical linear acceleration can provide an artificial \"gravity\" reference. Here, we hypothesized that visual linear acceleration could also be interpreted as an orientation cue in microgravity. Using virtual reality, we subjected twelve astronauts experiencing long-duration exposure to microgravity to visually simulated accelerating linear self-motion along a virtual corridor at 0.8 m•s<sup>- 2</sup> (0.083 G) for 16s. They then adjusted a virtual ground plane to indicate whether they had changed their perceived orientation. Control experiments used visually simulated linear self-motion at a constant velocity and control experiments on Earth mirrored the experiments conducted in microgravity in both upright and supine postures. Contrary to our hypothesis, no significant perceptual tilts were induced on Earth or in microgravity. However, we did replicate earlier results that both microgravity exposure (in comparison to on Earth) and a supine posture (in comparison to a sitting upright posture) were associated with higher variability in judgements of upright. Our experiments failed to demonstrate that exposure to visual acceleration can evoke a sense of tilt in a stationary observer in the dark, either in microgravity or on Earth.N = 209.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 3","pages":"68"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can visual acceleration evoke a sensation of tilt?\",\"authors\":\"Laurence R Harris, Björn Jörges, Nils Bury, Meaghan McManus, Ambika Bansal, Robert S Allison, Michael Jenkin\",\"doi\":\"10.1007/s00221-025-07023-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under the microgravity of the International Space Station, many of the normal processes that determine the perceptual upright on Earth are disrupted. For example, somatosensory cues are absent and an applied physical linear acceleration can provide an artificial \\\"gravity\\\" reference. Here, we hypothesized that visual linear acceleration could also be interpreted as an orientation cue in microgravity. Using virtual reality, we subjected twelve astronauts experiencing long-duration exposure to microgravity to visually simulated accelerating linear self-motion along a virtual corridor at 0.8 m•s<sup>- 2</sup> (0.083 G) for 16s. They then adjusted a virtual ground plane to indicate whether they had changed their perceived orientation. Control experiments used visually simulated linear self-motion at a constant velocity and control experiments on Earth mirrored the experiments conducted in microgravity in both upright and supine postures. Contrary to our hypothesis, no significant perceptual tilts were induced on Earth or in microgravity. However, we did replicate earlier results that both microgravity exposure (in comparison to on Earth) and a supine posture (in comparison to a sitting upright posture) were associated with higher variability in judgements of upright. Our experiments failed to demonstrate that exposure to visual acceleration can evoke a sense of tilt in a stationary observer in the dark, either in microgravity or on Earth.N = 209.</p>\",\"PeriodicalId\":12268,\"journal\":{\"name\":\"Experimental Brain Research\",\"volume\":\"243 3\",\"pages\":\"68\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00221-025-07023-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07023-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在国际空间站的微重力下,许多决定地球上感知直立的正常过程都被打乱了。例如,缺少体感线索,应用物理线性加速度可以提供人工的“重力”参考。在这里,我们假设视觉线性加速度也可以解释为微重力下的方向提示。利用虚拟现实技术,我们让12名长期暴露在微重力环境中的宇航员在视觉上模拟沿着0.8 m•s- 2 (0.083 G)的虚拟走廊加速直线自我运动16秒。然后,他们调整一个虚拟地平面,以表明他们是否改变了感知方向。控制实验采用视觉模拟匀速线性自运动,地球上的控制实验采用微重力下直立和仰卧姿势进行的实验。与我们的假设相反,在地球或微重力环境中没有引起明显的感知倾斜。然而,我们确实重复了先前的结果,即微重力暴露(与地球上相比)和仰卧姿势(与坐直姿势相比)与直立判断的更高变异性相关。我们的实验未能证明,无论是在微重力环境还是在地球上,暴露在视觉加速度下,静止的观察者在黑暗中都能产生倾斜感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can visual acceleration evoke a sensation of tilt?

Under the microgravity of the International Space Station, many of the normal processes that determine the perceptual upright on Earth are disrupted. For example, somatosensory cues are absent and an applied physical linear acceleration can provide an artificial "gravity" reference. Here, we hypothesized that visual linear acceleration could also be interpreted as an orientation cue in microgravity. Using virtual reality, we subjected twelve astronauts experiencing long-duration exposure to microgravity to visually simulated accelerating linear self-motion along a virtual corridor at 0.8 m•s- 2 (0.083 G) for 16s. They then adjusted a virtual ground plane to indicate whether they had changed their perceived orientation. Control experiments used visually simulated linear self-motion at a constant velocity and control experiments on Earth mirrored the experiments conducted in microgravity in both upright and supine postures. Contrary to our hypothesis, no significant perceptual tilts were induced on Earth or in microgravity. However, we did replicate earlier results that both microgravity exposure (in comparison to on Earth) and a supine posture (in comparison to a sitting upright posture) were associated with higher variability in judgements of upright. Our experiments failed to demonstrate that exposure to visual acceleration can evoke a sense of tilt in a stationary observer in the dark, either in microgravity or on Earth.N = 209.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信