多肽快速运输抗生素通过完整的鼓膜治疗中耳感染。

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-02-17 DOI:10.1080/10717544.2025.2463427
Arwa Kurabi, Emily Sereno, Allen F Ryan
{"title":"多肽快速运输抗生素通过完整的鼓膜治疗中耳感染。","authors":"Arwa Kurabi, Emily Sereno, Allen F Ryan","doi":"10.1080/10717544.2025.2463427","DOIUrl":null,"url":null,"abstract":"<p><p>The tympanic membrane (TM) forms an impenetrable barrier to medical therapies for middle ear (ME) diseases like otitis media. By screening a phage-displayed peptide library, we have previously discovered rare peptides that mediate the active transport of cargo across the intact membrane of animals and humans. Since the M13 filamentous bacteriophage on which the peptides are expressed are large (nearly 1 µm in length), this offers the possibility of noninvasively delivering drugs, large drug packages, or gene therapy to the ME. To evaluate this possibility, EDC chemistry was employed to covalently attach amoxicillin, or neomycin molecules to phage bearing a trans-TM peptide, as a model for large drug packages. Eight hours after application of antibiotic-phage to the TM of infected rats, ME bacterial titers were substantially reduced compared to untreated animals. As a control, antibiotic was linked to wild-type phage, not bearing any peptide, and application to the TM did not affect ME bacteria. The results support the ability of rare peptides to actively deliver pharmacologically relevant amounts of drugs through the intact TM and into the ME. Moreover, since bacteriophage engineered to express peptides are viral vectors, the trans-TM peptides could also transport other viral vectors into the ME.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2463427"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834822/pdf/","citationCount":"0","resultStr":"{\"title\":\"Peptides rapidly transport antibiotic across the intact tympanic membrane to treat a middle ear infection.\",\"authors\":\"Arwa Kurabi, Emily Sereno, Allen F Ryan\",\"doi\":\"10.1080/10717544.2025.2463427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tympanic membrane (TM) forms an impenetrable barrier to medical therapies for middle ear (ME) diseases like otitis media. By screening a phage-displayed peptide library, we have previously discovered rare peptides that mediate the active transport of cargo across the intact membrane of animals and humans. Since the M13 filamentous bacteriophage on which the peptides are expressed are large (nearly 1 µm in length), this offers the possibility of noninvasively delivering drugs, large drug packages, or gene therapy to the ME. To evaluate this possibility, EDC chemistry was employed to covalently attach amoxicillin, or neomycin molecules to phage bearing a trans-TM peptide, as a model for large drug packages. Eight hours after application of antibiotic-phage to the TM of infected rats, ME bacterial titers were substantially reduced compared to untreated animals. As a control, antibiotic was linked to wild-type phage, not bearing any peptide, and application to the TM did not affect ME bacteria. The results support the ability of rare peptides to actively deliver pharmacologically relevant amounts of drugs through the intact TM and into the ME. Moreover, since bacteriophage engineered to express peptides are viral vectors, the trans-TM peptides could also transport other viral vectors into the ME.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"32 1\",\"pages\":\"2463427\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2025.2463427\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2463427","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

对于中耳炎等中耳疾病的医学治疗,鼓膜(TM)形成了一个不可逾越的屏障。通过筛选噬菌体展示的肽库,我们之前已经发现了介导货物在动物和人类完整膜上的主动运输的罕见肽。由于表达肽的M13丝状噬菌体很大(长度接近1 μ m),这为无创递送药物、大型药物包装或基因治疗ME提供了可能。为了评估这种可能性,EDC化学被用于将阿莫西林或新霉素分子共价附着在携带反式tm肽的噬菌体上,作为大型药物包装的模型。将抗生素噬菌体应用于感染大鼠的TM 8小时后,与未治疗的动物相比,ME细菌滴度显着降低。作为对照,抗生素与野生型噬菌体连接,不含任何肽,应用于TM对ME细菌没有影响。这些结果支持了稀有肽通过完整的TM主动传递药理学上相关量的药物并进入ME的能力。此外,由于表达肽的噬菌体是病毒载体,反式tm肽也可以将其他病毒载体转运到ME中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peptides rapidly transport antibiotic across the intact tympanic membrane to treat a middle ear infection.

The tympanic membrane (TM) forms an impenetrable barrier to medical therapies for middle ear (ME) diseases like otitis media. By screening a phage-displayed peptide library, we have previously discovered rare peptides that mediate the active transport of cargo across the intact membrane of animals and humans. Since the M13 filamentous bacteriophage on which the peptides are expressed are large (nearly 1 µm in length), this offers the possibility of noninvasively delivering drugs, large drug packages, or gene therapy to the ME. To evaluate this possibility, EDC chemistry was employed to covalently attach amoxicillin, or neomycin molecules to phage bearing a trans-TM peptide, as a model for large drug packages. Eight hours after application of antibiotic-phage to the TM of infected rats, ME bacterial titers were substantially reduced compared to untreated animals. As a control, antibiotic was linked to wild-type phage, not bearing any peptide, and application to the TM did not affect ME bacteria. The results support the ability of rare peptides to actively deliver pharmacologically relevant amounts of drugs through the intact TM and into the ME. Moreover, since bacteriophage engineered to express peptides are viral vectors, the trans-TM peptides could also transport other viral vectors into the ME.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信