{"title":"白藜芦醇通过Nrf2信号通路发挥抗病毒和抗氧化应激活性,抑制非洲猪瘟病毒复制。","authors":"Di Liu, Lian-Feng Li, Huanjie Zhai, Tao Wang, Jing Lan, Mengxiang Cao, Meng Yao, Yijing Wang, Jia Li, Xin Song, Yuan Sun, Hua-Ji Qiu","doi":"10.1080/22221751.2025.2469662","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever (ASF) is a highly contagious and severe infectious disease caused by African swine fever virus (ASFV). The disease significantly threatens the sustainable development of the global pig industry. Unfortunately, to date, no safe and efficacious vaccines are commercially available except in Vietnam. Antioxidative stress is a critical factor in antiviral strategies. In this study, we show that ASFV infection elevates the level of reactive oxygen species (ROS) and suppresses the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway <i>in vitro</i> and <i>in vivo</i>. Moreover, overexpressing Nrf2 can significantly inhibit ASFV replication. Through high-throughput screening of natural small molecules against ASFV, we identify resveratrol (RES), an Nrf2 activator, as a compound capable of inducing the cellular antiviral responses and effectively inhibiting ASFV replication in primary porcine alveolar macrophages (PAMs). Notably, untargeted metabolomics profiling reveals that glutathione emerges as a primary differential metabolite related to the antiviral activities of RES against ASFV. Mechanistically, RES exerts its antiviral effects and attenuates the elevated level of ROS caused by ASFV infection by inducing the production of reduced glutathione (GSH) <i>via</i> the activation of the Nrf2 signaling pathway. In conclusion, RES exhibits broad efficacy as a potentially effective compound for inhibiting ASFV infection and alleviating the oxidative stress induced by ASFV infection <i>via</i> the Nrf2 signaling pathway.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2469662"},"PeriodicalIF":8.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878180/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resveratrol inhibits African swine fever virus replication <i>via</i> the Nrf2-mediated reduced glutathione and antioxidative activities.\",\"authors\":\"Di Liu, Lian-Feng Li, Huanjie Zhai, Tao Wang, Jing Lan, Mengxiang Cao, Meng Yao, Yijing Wang, Jia Li, Xin Song, Yuan Sun, Hua-Ji Qiu\",\"doi\":\"10.1080/22221751.2025.2469662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African swine fever (ASF) is a highly contagious and severe infectious disease caused by African swine fever virus (ASFV). The disease significantly threatens the sustainable development of the global pig industry. Unfortunately, to date, no safe and efficacious vaccines are commercially available except in Vietnam. Antioxidative stress is a critical factor in antiviral strategies. In this study, we show that ASFV infection elevates the level of reactive oxygen species (ROS) and suppresses the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway <i>in vitro</i> and <i>in vivo</i>. Moreover, overexpressing Nrf2 can significantly inhibit ASFV replication. Through high-throughput screening of natural small molecules against ASFV, we identify resveratrol (RES), an Nrf2 activator, as a compound capable of inducing the cellular antiviral responses and effectively inhibiting ASFV replication in primary porcine alveolar macrophages (PAMs). Notably, untargeted metabolomics profiling reveals that glutathione emerges as a primary differential metabolite related to the antiviral activities of RES against ASFV. Mechanistically, RES exerts its antiviral effects and attenuates the elevated level of ROS caused by ASFV infection by inducing the production of reduced glutathione (GSH) <i>via</i> the activation of the Nrf2 signaling pathway. In conclusion, RES exhibits broad efficacy as a potentially effective compound for inhibiting ASFV infection and alleviating the oxidative stress induced by ASFV infection <i>via</i> the Nrf2 signaling pathway.</p>\",\"PeriodicalId\":11602,\"journal\":{\"name\":\"Emerging Microbes & Infections\",\"volume\":\" \",\"pages\":\"2469662\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878180/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Microbes & Infections\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/22221751.2025.2469662\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2025.2469662","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Resveratrol inhibits African swine fever virus replication via the Nrf2-mediated reduced glutathione and antioxidative activities.
African swine fever (ASF) is a highly contagious and severe infectious disease caused by African swine fever virus (ASFV). The disease significantly threatens the sustainable development of the global pig industry. Unfortunately, to date, no safe and efficacious vaccines are commercially available except in Vietnam. Antioxidative stress is a critical factor in antiviral strategies. In this study, we show that ASFV infection elevates the level of reactive oxygen species (ROS) and suppresses the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vitro and in vivo. Moreover, overexpressing Nrf2 can significantly inhibit ASFV replication. Through high-throughput screening of natural small molecules against ASFV, we identify resveratrol (RES), an Nrf2 activator, as a compound capable of inducing the cellular antiviral responses and effectively inhibiting ASFV replication in primary porcine alveolar macrophages (PAMs). Notably, untargeted metabolomics profiling reveals that glutathione emerges as a primary differential metabolite related to the antiviral activities of RES against ASFV. Mechanistically, RES exerts its antiviral effects and attenuates the elevated level of ROS caused by ASFV infection by inducing the production of reduced glutathione (GSH) via the activation of the Nrf2 signaling pathway. In conclusion, RES exhibits broad efficacy as a potentially effective compound for inhibiting ASFV infection and alleviating the oxidative stress induced by ASFV infection via the Nrf2 signaling pathway.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.