南江黄山羊IGF2BP1第二内含子snp的鉴定及其与生长性状的关系

IF 1.7 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animal Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-02-17 DOI:10.1080/10495398.2025.2461176
Shuheng Chen, Liang Xu, Junchen Leng, Zitong Chen, Yu Chen, Li Li, Hongping Zhang, Mingzhou Li, Jiaxue Cao
{"title":"南江黄山羊IGF2BP1第二内含子snp的鉴定及其与生长性状的关系","authors":"Shuheng Chen, Liang Xu, Junchen Leng, Zitong Chen, Yu Chen, Li Li, Hongping Zhang, Mingzhou Li, Jiaxue Cao","doi":"10.1080/10495398.2025.2461176","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin-like Growth Factor 2 mRNA-binding Protein 1 (<i>IGF2BP1</i>) is a candidate gene of significant interest for modulating economically important traits in livestock and poultry. The second intron of <i>IGF2BP1</i> has been implicated in growth-related traits, though its precise mechanistic role remains elusive. Initial resequencing analyses in our laboratory indicated strong selective pressures on the <i>IGF2BP1</i> genomic region, prompting the selection and identification of several single nucleotide polymorphisms (SNPs). Seven SNPs were mapped to the conserved region of the second intron, necessitating further investigation into their functional relevance and association with growth traits. In this study, 348 Nanjiang Yellow goats were analyzed, and the association analysis via the GLM program in SAS 9.4 identified five SNPs significantly correlated with growth traits. Notably, rs652062749(A > G) emerged as a critical locus influencing later-stage growth traits. Furthermore, strong linkage disequilibrium was observed among three SNPs, with the rs638185407 (T > A) variant markedly enhancing luciferase activity in H293T cells. Combination genotypes TTAACT, TTCCCC, and ATCACT were identified as superior for growth traits, offering theoretical insights for genetic co-breeding. This study underscores the potential utility of <i>IGF2BP1</i> as a functional genetic marker in Nanjiang Yellow goat breeding programs.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2461176"},"PeriodicalIF":1.7000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of SNPs in the second intron of <i>IGF2BP1</i> and their Association with growth traits in Nanjiang Yellow goat.\",\"authors\":\"Shuheng Chen, Liang Xu, Junchen Leng, Zitong Chen, Yu Chen, Li Li, Hongping Zhang, Mingzhou Li, Jiaxue Cao\",\"doi\":\"10.1080/10495398.2025.2461176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin-like Growth Factor 2 mRNA-binding Protein 1 (<i>IGF2BP1</i>) is a candidate gene of significant interest for modulating economically important traits in livestock and poultry. The second intron of <i>IGF2BP1</i> has been implicated in growth-related traits, though its precise mechanistic role remains elusive. Initial resequencing analyses in our laboratory indicated strong selective pressures on the <i>IGF2BP1</i> genomic region, prompting the selection and identification of several single nucleotide polymorphisms (SNPs). Seven SNPs were mapped to the conserved region of the second intron, necessitating further investigation into their functional relevance and association with growth traits. In this study, 348 Nanjiang Yellow goats were analyzed, and the association analysis via the GLM program in SAS 9.4 identified five SNPs significantly correlated with growth traits. Notably, rs652062749(A > G) emerged as a critical locus influencing later-stage growth traits. Furthermore, strong linkage disequilibrium was observed among three SNPs, with the rs638185407 (T > A) variant markedly enhancing luciferase activity in H293T cells. Combination genotypes TTAACT, TTCCCC, and ATCACT were identified as superior for growth traits, offering theoretical insights for genetic co-breeding. This study underscores the potential utility of <i>IGF2BP1</i> as a functional genetic marker in Nanjiang Yellow goat breeding programs.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\"36 1\",\"pages\":\"2461176\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2025.2461176\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2025.2461176","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

胰岛素样生长因子2 mrna结合蛋白1 (IGF2BP1)是调控畜禽经济性状的重要候选基因。IGF2BP1的第二个内含子与生长相关的性状有关,尽管其确切的机制作用尚不清楚。我们实验室的初步重测序分析表明,IGF2BP1基因组区域存在强大的选择压力,促使选择和鉴定了几个单核苷酸多态性(snp)。7个snp被定位到第二个内含子的保守区域,需要进一步研究它们的功能相关性和与生长性状的关联。本研究对348只南江黄山羊进行分析,通过SAS 9.4的GLM程序进行关联分析,鉴定出5个与生长性状显著相关的snp。值得注意的是,rs652062749(A > G)成为影响后期生长性状的关键位点。此外,三个snp之间存在强烈的连锁不平衡,其中rs638185407 (T b> A)变异显著增强了H293T细胞中的荧光素酶活性。TTAACT、TTCCCC和ATCACT组合基因型在生长性状上具有优势,为遗传共育种提供了理论依据。本研究强调了IGF2BP1作为功能性遗传标记在南江黄山羊育种计划中的潜在应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of SNPs in the second intron of IGF2BP1 and their Association with growth traits in Nanjiang Yellow goat.

Insulin-like Growth Factor 2 mRNA-binding Protein 1 (IGF2BP1) is a candidate gene of significant interest for modulating economically important traits in livestock and poultry. The second intron of IGF2BP1 has been implicated in growth-related traits, though its precise mechanistic role remains elusive. Initial resequencing analyses in our laboratory indicated strong selective pressures on the IGF2BP1 genomic region, prompting the selection and identification of several single nucleotide polymorphisms (SNPs). Seven SNPs were mapped to the conserved region of the second intron, necessitating further investigation into their functional relevance and association with growth traits. In this study, 348 Nanjiang Yellow goats were analyzed, and the association analysis via the GLM program in SAS 9.4 identified five SNPs significantly correlated with growth traits. Notably, rs652062749(A > G) emerged as a critical locus influencing later-stage growth traits. Furthermore, strong linkage disequilibrium was observed among three SNPs, with the rs638185407 (T > A) variant markedly enhancing luciferase activity in H293T cells. Combination genotypes TTAACT, TTCCCC, and ATCACT were identified as superior for growth traits, offering theoretical insights for genetic co-breeding. This study underscores the potential utility of IGF2BP1 as a functional genetic marker in Nanjiang Yellow goat breeding programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Biotechnology
Animal Biotechnology 工程技术-奶制品与动物科学
CiteScore
2.90
自引率
5.40%
发文量
230
审稿时长
>12 weeks
期刊介绍: Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology. Submissions on the following topics are particularly welcome: - Applied microbiology, immunogenetics and antibiotic resistance - Genome engineering and animal models - Comparative genomics - Gene editing and CRISPRs - Reproductive biotechnologies - Synthetic biology and design of new genomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信