{"title":"TDP-43/ alkbh5介导的m6A修饰CDC25A mRNA通过促进G1/S细胞周期转变促进胶质母细胞瘤生长","authors":"Yunxiao Zhang, Sidi Xie, Weizhao Li, Junwei Gu, Xi-an Zhang, Bowen Ni, Ziyu Wang, Runwei Yang, Haimin Song, Yaxuan Zhong, Peiting Huang, Jinyao Zhou, Yongfu Cao, Jing Guo, Yawei Liu, Songtao Qi, Hai Wang","doi":"10.1002/mco2.70108","DOIUrl":null,"url":null,"abstract":"<p>Glioblastoma (GBM) exhibits significant intratumor heterogeneity (ITH), indicating the presence of tumor cells with diverse growth rates. Here, we aimed to identify fast-growing cells in GBM and elucidate the underlying mechanisms. Precisely targeting these cells could offer an improved treatment option. Our results found that targeting ALKBH5 expression impaired GBM proliferation and tumor stemness. Nuclear but not overall expression of ALKBH5 differs between monoclonal cells derived from the same patient with different proliferation rates. Mechanistically, ALKBH5 interacted with TAR DNA-binding protein 43 (TDP-43) in fast-growing cells. Furthermore, TDP-43 facilitated the nuclear localization of ALKBH5 and its binding to cell division cycle 25A (CDC25A) pre-mRNA. The TDP-43/ALKBH5 complex regulates CDC25A mRNA splicing via N6-methyladenosine (m<sup>6</sup>A) demethylation to maintain the expression of its oncogenic isoform (CDC25A-1), ultimately promoting the G1/S phase transition and growth of GBM cells. TRAD01 selectively targeted the interaction between TDP-43 and ALKBH5, leading to significant antitumor effects both in vitro and in vivo. Our study identified a novel epigenetic mechanism by which TDP-43/ALKBH5 contributes to GBM growth via m<sup>6</sup>A modification and alternative splicing. Therefore, targeting the TDP-43/ALKBH5 axis might be a promising therapeutic strategy for GBM patients.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70108","citationCount":"0","resultStr":"{\"title\":\"TDP-43/ALKBH5-mediated m6A modification of CDC25A mRNA promotes glioblastoma growth by facilitating G1/S cell cycle transition\",\"authors\":\"Yunxiao Zhang, Sidi Xie, Weizhao Li, Junwei Gu, Xi-an Zhang, Bowen Ni, Ziyu Wang, Runwei Yang, Haimin Song, Yaxuan Zhong, Peiting Huang, Jinyao Zhou, Yongfu Cao, Jing Guo, Yawei Liu, Songtao Qi, Hai Wang\",\"doi\":\"10.1002/mco2.70108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glioblastoma (GBM) exhibits significant intratumor heterogeneity (ITH), indicating the presence of tumor cells with diverse growth rates. Here, we aimed to identify fast-growing cells in GBM and elucidate the underlying mechanisms. Precisely targeting these cells could offer an improved treatment option. Our results found that targeting ALKBH5 expression impaired GBM proliferation and tumor stemness. Nuclear but not overall expression of ALKBH5 differs between monoclonal cells derived from the same patient with different proliferation rates. Mechanistically, ALKBH5 interacted with TAR DNA-binding protein 43 (TDP-43) in fast-growing cells. Furthermore, TDP-43 facilitated the nuclear localization of ALKBH5 and its binding to cell division cycle 25A (CDC25A) pre-mRNA. The TDP-43/ALKBH5 complex regulates CDC25A mRNA splicing via N6-methyladenosine (m<sup>6</sup>A) demethylation to maintain the expression of its oncogenic isoform (CDC25A-1), ultimately promoting the G1/S phase transition and growth of GBM cells. TRAD01 selectively targeted the interaction between TDP-43 and ALKBH5, leading to significant antitumor effects both in vitro and in vivo. Our study identified a novel epigenetic mechanism by which TDP-43/ALKBH5 contributes to GBM growth via m<sup>6</sup>A modification and alternative splicing. Therefore, targeting the TDP-43/ALKBH5 axis might be a promising therapeutic strategy for GBM patients.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
TDP-43/ALKBH5-mediated m6A modification of CDC25A mRNA promotes glioblastoma growth by facilitating G1/S cell cycle transition
Glioblastoma (GBM) exhibits significant intratumor heterogeneity (ITH), indicating the presence of tumor cells with diverse growth rates. Here, we aimed to identify fast-growing cells in GBM and elucidate the underlying mechanisms. Precisely targeting these cells could offer an improved treatment option. Our results found that targeting ALKBH5 expression impaired GBM proliferation and tumor stemness. Nuclear but not overall expression of ALKBH5 differs between monoclonal cells derived from the same patient with different proliferation rates. Mechanistically, ALKBH5 interacted with TAR DNA-binding protein 43 (TDP-43) in fast-growing cells. Furthermore, TDP-43 facilitated the nuclear localization of ALKBH5 and its binding to cell division cycle 25A (CDC25A) pre-mRNA. The TDP-43/ALKBH5 complex regulates CDC25A mRNA splicing via N6-methyladenosine (m6A) demethylation to maintain the expression of its oncogenic isoform (CDC25A-1), ultimately promoting the G1/S phase transition and growth of GBM cells. TRAD01 selectively targeted the interaction between TDP-43 and ALKBH5, leading to significant antitumor effects both in vitro and in vivo. Our study identified a novel epigenetic mechanism by which TDP-43/ALKBH5 contributes to GBM growth via m6A modification and alternative splicing. Therefore, targeting the TDP-43/ALKBH5 axis might be a promising therapeutic strategy for GBM patients.