基于深度学习和卡尔曼滤波的无人机视觉检测与跟踪

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nancy Alshaer, Reham Abdelfatah, Tawfik Ismail, Haitham Mahmoud
{"title":"基于深度学习和卡尔曼滤波的无人机视觉检测与跟踪","authors":"Nancy Alshaer,&nbsp;Reham Abdelfatah,&nbsp;Tawfik Ismail,&nbsp;Haitham Mahmoud","doi":"10.1111/coin.70026","DOIUrl":null,"url":null,"abstract":"<p>The rapid increase in unmanned aerial vehicles (UAVs) usage across various sectors has heightened the need for robust detection and tracking systems due to safety and security concerns. Traditional methods like radar and acoustic sensors face limitations in noisy environments, underscoring the necessity for advanced solutions such as deep learning-based detection and tracking. Hence, this article proposes a two-stage platform designed to address these challenges by detecting, classifying, and tracking various consumer-grade UAVs. The tracking efficacy of the proposed system is assessed using a combination of deep learning and Kalman filter techniques. Specifically, we evaluate models such as YOLOv3, YOLOv4, YOLOv5, and YOLOx to identify the most efficient detector for the initial detection stage. Moreover, we employ both the Kalman filter and the Extended Kalman filter for the tracking stage, enhancing the system's robustness and enabling real-time tracking capabilities. To train our detector, we construct a dataset comprising approximately 10,000 records that capture the diverse environmental and behavioural conditions experienced by UAVs during their flight. We then present both visual and analytical results to assess and compare the performance of our detector and tracker. Our proposed system effectively mitigates cumulative detection errors across consecutive video frames and enhances the accuracy of the target's bounding boxes.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.70026","citationCount":"0","resultStr":"{\"title\":\"Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter\",\"authors\":\"Nancy Alshaer,&nbsp;Reham Abdelfatah,&nbsp;Tawfik Ismail,&nbsp;Haitham Mahmoud\",\"doi\":\"10.1111/coin.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid increase in unmanned aerial vehicles (UAVs) usage across various sectors has heightened the need for robust detection and tracking systems due to safety and security concerns. Traditional methods like radar and acoustic sensors face limitations in noisy environments, underscoring the necessity for advanced solutions such as deep learning-based detection and tracking. Hence, this article proposes a two-stage platform designed to address these challenges by detecting, classifying, and tracking various consumer-grade UAVs. The tracking efficacy of the proposed system is assessed using a combination of deep learning and Kalman filter techniques. Specifically, we evaluate models such as YOLOv3, YOLOv4, YOLOv5, and YOLOx to identify the most efficient detector for the initial detection stage. Moreover, we employ both the Kalman filter and the Extended Kalman filter for the tracking stage, enhancing the system's robustness and enabling real-time tracking capabilities. To train our detector, we construct a dataset comprising approximately 10,000 records that capture the diverse environmental and behavioural conditions experienced by UAVs during their flight. We then present both visual and analytical results to assess and compare the performance of our detector and tracker. Our proposed system effectively mitigates cumulative detection errors across consecutive video frames and enhances the accuracy of the target's bounding boxes.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.70026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70026\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于安全和安保方面的考虑,无人机在各个领域的使用迅速增加,增加了对强大的检测和跟踪系统的需求。雷达和声学传感器等传统方法在嘈杂环境中面临局限性,这凸显了基于深度学习的检测和跟踪等先进解决方案的必要性。因此,本文提出了一个两阶段的平台,旨在通过检测、分类和跟踪各种消费级无人机来解决这些挑战。利用深度学习和卡尔曼滤波技术的结合来评估所提出系统的跟踪效果。具体来说,我们评估了YOLOv3、YOLOv4、YOLOv5和YOLOx等模型,以确定在初始检测阶段最有效的检测器。此外,我们在跟踪阶段采用了卡尔曼滤波器和扩展卡尔曼滤波器,增强了系统的鲁棒性并实现了实时跟踪能力。为了训练我们的探测器,我们构建了一个包含大约10,000条记录的数据集,这些记录捕获了无人机在飞行过程中经历的各种环境和行为条件。然后,我们展示了视觉和分析结果,以评估和比较我们的探测器和跟踪器的性能。我们提出的系统有效地减轻了连续视频帧的累积检测误差,提高了目标边界框的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter

Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter

The rapid increase in unmanned aerial vehicles (UAVs) usage across various sectors has heightened the need for robust detection and tracking systems due to safety and security concerns. Traditional methods like radar and acoustic sensors face limitations in noisy environments, underscoring the necessity for advanced solutions such as deep learning-based detection and tracking. Hence, this article proposes a two-stage platform designed to address these challenges by detecting, classifying, and tracking various consumer-grade UAVs. The tracking efficacy of the proposed system is assessed using a combination of deep learning and Kalman filter techniques. Specifically, we evaluate models such as YOLOv3, YOLOv4, YOLOv5, and YOLOx to identify the most efficient detector for the initial detection stage. Moreover, we employ both the Kalman filter and the Extended Kalman filter for the tracking stage, enhancing the system's robustness and enabling real-time tracking capabilities. To train our detector, we construct a dataset comprising approximately 10,000 records that capture the diverse environmental and behavioural conditions experienced by UAVs during their flight. We then present both visual and analytical results to assess and compare the performance of our detector and tracker. Our proposed system effectively mitigates cumulative detection errors across consecutive video frames and enhances the accuracy of the target's bounding boxes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信