生物炭基肥料与活性屏障的结合在短期内提高了土壤碳储量、土壤保水能力和作物产量

IF 4.1 3区 工程技术 Q1 AGRONOMY
Negar Omidvar, Stephen Joseph, Lakmini Dissanayake, Michael B. Farrar, Frédérique Reverchon, Russell Burnett, Mehran Rezaei Rashti, Apsara Amarasinghe, Sara Tahery, Zhihong Xu, Wendy Timms, Brittany Elliott, Hongdou Liu, Shahla Hosseini Bai
{"title":"生物炭基肥料与活性屏障的结合在短期内提高了土壤碳储量、土壤保水能力和作物产量","authors":"Negar Omidvar,&nbsp;Stephen Joseph,&nbsp;Lakmini Dissanayake,&nbsp;Michael B. Farrar,&nbsp;Frédérique Reverchon,&nbsp;Russell Burnett,&nbsp;Mehran Rezaei Rashti,&nbsp;Apsara Amarasinghe,&nbsp;Sara Tahery,&nbsp;Zhihong Xu,&nbsp;Wendy Timms,&nbsp;Brittany Elliott,&nbsp;Hongdou Liu,&nbsp;Shahla Hosseini Bai","doi":"10.1111/gcbb.70021","DOIUrl":null,"url":null,"abstract":"<p>Climate change threatens long-term soil health because of increased severity and frequency of drought periods. Applying biochar to soils before a drought can increase non-biochar soil carbon (C) and water storage over the long term and sustain crop yield. However, the on-farm benefit of buried solid biochar and applied liquid biochar at low rates remains uncertain. This study examined the effects of two novel biochar-based soil amendments on soil C, water storage and crop yield. The biochar-based amendments included a biochar reactive barrier (RB) made by layering wood-based biochar, straw mulch and cow manure into a series of open surface trenches, and a liquid biochar mineral complex (BMC) applied twice, at low rate (200 kg ha<sup>−1</sup>) to one side of RB (fertilised area), while the other side of RB received no treatments (non-fertilised area). Moisture concentration within the RB ranged from 6.76% up to 56.68% after large rainfall, more than double the surrounding soils and gradually started migrating from the RB outwards. Soil within 50 cm distance of the RB showed a 24.5% increase in non-biochar soil C compared with soil at 600 cm distance of the RB, 2.54% versus 2.04%, respectively, in the non-fertilised area, which was supported with lowering soil microbial activity. Pasture yield increase was associated with liquid BMC fertiliser rather than proximity to the RB. Pasture yield was 44% higher in the fertilised area compared with the non-fertilised area 27.89 t ha<sup>−1</sup> versus 19.31 t ha<sup>−1</sup>. Approximately 158 kg CO<sub>2</sub>e was removed from the atmosphere for each cubic meter of RB and an annual removal of 150 kg CO<sub>2</sub>e ha<sup>−1</sup> was estimated by liquid BMC application. Income earned by increased yield was still profitable even though applied liquid BMC could cost between USD 400–520 ha<sup>−1</sup> including shipping costs. Overall, our study suggested biochar-based RB and BMC fertilisers can effectively increase soil moisture retention while building non-biochar soil C storage in the surrounding soil. The adoption of biochar-based techniques has the potential to improve drought resilience while increasing soil C in wide range of non-irrigated cropping systems.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70021","citationCount":"0","resultStr":"{\"title\":\"Combination of Biochar-Based Fertilisers and Reactive Barriers Improved Soil Carbon Storage, Soil Moisture Retention, and Crop Yield in Short Term\",\"authors\":\"Negar Omidvar,&nbsp;Stephen Joseph,&nbsp;Lakmini Dissanayake,&nbsp;Michael B. Farrar,&nbsp;Frédérique Reverchon,&nbsp;Russell Burnett,&nbsp;Mehran Rezaei Rashti,&nbsp;Apsara Amarasinghe,&nbsp;Sara Tahery,&nbsp;Zhihong Xu,&nbsp;Wendy Timms,&nbsp;Brittany Elliott,&nbsp;Hongdou Liu,&nbsp;Shahla Hosseini Bai\",\"doi\":\"10.1111/gcbb.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change threatens long-term soil health because of increased severity and frequency of drought periods. Applying biochar to soils before a drought can increase non-biochar soil carbon (C) and water storage over the long term and sustain crop yield. However, the on-farm benefit of buried solid biochar and applied liquid biochar at low rates remains uncertain. This study examined the effects of two novel biochar-based soil amendments on soil C, water storage and crop yield. The biochar-based amendments included a biochar reactive barrier (RB) made by layering wood-based biochar, straw mulch and cow manure into a series of open surface trenches, and a liquid biochar mineral complex (BMC) applied twice, at low rate (200 kg ha<sup>−1</sup>) to one side of RB (fertilised area), while the other side of RB received no treatments (non-fertilised area). Moisture concentration within the RB ranged from 6.76% up to 56.68% after large rainfall, more than double the surrounding soils and gradually started migrating from the RB outwards. Soil within 50 cm distance of the RB showed a 24.5% increase in non-biochar soil C compared with soil at 600 cm distance of the RB, 2.54% versus 2.04%, respectively, in the non-fertilised area, which was supported with lowering soil microbial activity. Pasture yield increase was associated with liquid BMC fertiliser rather than proximity to the RB. Pasture yield was 44% higher in the fertilised area compared with the non-fertilised area 27.89 t ha<sup>−1</sup> versus 19.31 t ha<sup>−1</sup>. Approximately 158 kg CO<sub>2</sub>e was removed from the atmosphere for each cubic meter of RB and an annual removal of 150 kg CO<sub>2</sub>e ha<sup>−1</sup> was estimated by liquid BMC application. Income earned by increased yield was still profitable even though applied liquid BMC could cost between USD 400–520 ha<sup>−1</sup> including shipping costs. Overall, our study suggested biochar-based RB and BMC fertilisers can effectively increase soil moisture retention while building non-biochar soil C storage in the surrounding soil. The adoption of biochar-based techniques has the potential to improve drought resilience while increasing soil C in wide range of non-irrigated cropping systems.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70021\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70021","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

气候变化威胁到土壤的长期健康,因为干旱时期的严重程度和频率增加。在干旱之前向土壤中施用生物炭可以长期增加非生物炭土壤碳(C)和水的储存,并维持作物产量。然而,埋藏固体生物炭和低速率应用液体生物炭的农场效益仍然不确定。研究了两种新型生物炭基土壤改良剂对土壤碳、水分储存和作物产量的影响。生物炭基改良包括将木质生物炭、秸秆覆盖物和牛粪分层制成生物炭反应屏障(RB),并在RB的一侧(施肥区)以低速率(200 kg ha - 1)施用两次液体生物炭矿物复合物(BMC),而RB的另一侧(未施肥区)不进行任何处理。大降雨后,RB内的水分浓度在6.76% ~ 56.68%之间,是周围土壤的两倍以上,并逐渐开始向RB外迁移。在距RB 50 cm的土壤中,非生物炭土壤C比距RB 600 cm的土壤增加了24.5%,分别为2.54%和2.04%,这与土壤微生物活性降低有关。牧草产量的增加与液态BMC肥料有关,而与靠近RB无关。施肥区牧草产量比未施肥区高出44% (27.89 t ha - 1比19.31 t ha - 1)。每立方米RB可从大气中去除约158千克CO2e,通过应用液态BMC估计每年可去除150千克CO2e ha - 1。尽管应用液态BMC的成本可能在400-520公顷(包括运输成本)之间,但由于产量增加而获得的收入仍然是有利可图的。综上所述,生物炭基RB和BMC肥可以有效提高土壤保水能力,同时在周围土壤中建立非生物炭土壤碳储量。采用生物炭技术有可能提高抗旱能力,同时在广泛的非灌溉种植系统中增加土壤C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combination of Biochar-Based Fertilisers and Reactive Barriers Improved Soil Carbon Storage, Soil Moisture Retention, and Crop Yield in Short Term

Combination of Biochar-Based Fertilisers and Reactive Barriers Improved Soil Carbon Storage, Soil Moisture Retention, and Crop Yield in Short Term

Climate change threatens long-term soil health because of increased severity and frequency of drought periods. Applying biochar to soils before a drought can increase non-biochar soil carbon (C) and water storage over the long term and sustain crop yield. However, the on-farm benefit of buried solid biochar and applied liquid biochar at low rates remains uncertain. This study examined the effects of two novel biochar-based soil amendments on soil C, water storage and crop yield. The biochar-based amendments included a biochar reactive barrier (RB) made by layering wood-based biochar, straw mulch and cow manure into a series of open surface trenches, and a liquid biochar mineral complex (BMC) applied twice, at low rate (200 kg ha−1) to one side of RB (fertilised area), while the other side of RB received no treatments (non-fertilised area). Moisture concentration within the RB ranged from 6.76% up to 56.68% after large rainfall, more than double the surrounding soils and gradually started migrating from the RB outwards. Soil within 50 cm distance of the RB showed a 24.5% increase in non-biochar soil C compared with soil at 600 cm distance of the RB, 2.54% versus 2.04%, respectively, in the non-fertilised area, which was supported with lowering soil microbial activity. Pasture yield increase was associated with liquid BMC fertiliser rather than proximity to the RB. Pasture yield was 44% higher in the fertilised area compared with the non-fertilised area 27.89 t ha−1 versus 19.31 t ha−1. Approximately 158 kg CO2e was removed from the atmosphere for each cubic meter of RB and an annual removal of 150 kg CO2e ha−1 was estimated by liquid BMC application. Income earned by increased yield was still profitable even though applied liquid BMC could cost between USD 400–520 ha−1 including shipping costs. Overall, our study suggested biochar-based RB and BMC fertilisers can effectively increase soil moisture retention while building non-biochar soil C storage in the surrounding soil. The adoption of biochar-based techniques has the potential to improve drought resilience while increasing soil C in wide range of non-irrigated cropping systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信