气水合物储层中水合物解离和热水注入热刺激的数值研究

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Kaixiang Shen, Yingsheng Wang, Xiangyang Yan, Jiawei Zhou, Kewei Zhang, Youshi Jiang
{"title":"气水合物储层中水合物解离和热水注入热刺激的数值研究","authors":"Kaixiang Shen,&nbsp;Yingsheng Wang,&nbsp;Xiangyang Yan,&nbsp;Jiawei Zhou,&nbsp;Kewei Zhang,&nbsp;Youshi Jiang","doi":"10.1002/ese3.1990","DOIUrl":null,"url":null,"abstract":"<p>Hot water injection has been a simple and promising method of thermally stimulating the extraction of hydrates, which promotes the dissociation of natural gas hydrates and improves gas production. However, the temperature region influenced by injecting hot water requires further research and evaluation. In this study, a computational model of the temperature field in the hydrate reservoir during hot water injection with the finite volume method, considering coupled gas–liquid two-phase flow, heat conduction, and hydrate dissociation, was developed. The model focuses on hot water injection vertical wells completed with slotted liners in the Shenhu Sea area hydrate reservoir, which can consider the heterogeneity of porosity, permeability, and saturation. It also analyzes the effects of injection volume, injection rate, hot water temperature, and other factors on the variations in temperature and pressure distribution. The results indicate that selecting the appropriate injection volume, the temperature of hot water, and the injection rate can promote hydrate decomposition and expand the range of heat stimulation reservoir temperature. Reservoir heterogeneity leads to heterogeneity of the hydrate dissociation front and temperature influence range, and the influence range of heat stimulation is larger than homogeneous reservoir.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 2","pages":"551-561"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1990","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Hydrate Dissociation and Heat Stimulation by Hot Water Injection in Gas Hydrate Reservoirs\",\"authors\":\"Kaixiang Shen,&nbsp;Yingsheng Wang,&nbsp;Xiangyang Yan,&nbsp;Jiawei Zhou,&nbsp;Kewei Zhang,&nbsp;Youshi Jiang\",\"doi\":\"10.1002/ese3.1990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hot water injection has been a simple and promising method of thermally stimulating the extraction of hydrates, which promotes the dissociation of natural gas hydrates and improves gas production. However, the temperature region influenced by injecting hot water requires further research and evaluation. In this study, a computational model of the temperature field in the hydrate reservoir during hot water injection with the finite volume method, considering coupled gas–liquid two-phase flow, heat conduction, and hydrate dissociation, was developed. The model focuses on hot water injection vertical wells completed with slotted liners in the Shenhu Sea area hydrate reservoir, which can consider the heterogeneity of porosity, permeability, and saturation. It also analyzes the effects of injection volume, injection rate, hot water temperature, and other factors on the variations in temperature and pressure distribution. The results indicate that selecting the appropriate injection volume, the temperature of hot water, and the injection rate can promote hydrate decomposition and expand the range of heat stimulation reservoir temperature. Reservoir heterogeneity leads to heterogeneity of the hydrate dissociation front and temperature influence range, and the influence range of heat stimulation is larger than homogeneous reservoir.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 2\",\"pages\":\"551-561\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1990\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1990\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1990","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Study of Hydrate Dissociation and Heat Stimulation by Hot Water Injection in Gas Hydrate Reservoirs

Numerical Study of Hydrate Dissociation and Heat Stimulation by Hot Water Injection in Gas Hydrate Reservoirs

Hot water injection has been a simple and promising method of thermally stimulating the extraction of hydrates, which promotes the dissociation of natural gas hydrates and improves gas production. However, the temperature region influenced by injecting hot water requires further research and evaluation. In this study, a computational model of the temperature field in the hydrate reservoir during hot water injection with the finite volume method, considering coupled gas–liquid two-phase flow, heat conduction, and hydrate dissociation, was developed. The model focuses on hot water injection vertical wells completed with slotted liners in the Shenhu Sea area hydrate reservoir, which can consider the heterogeneity of porosity, permeability, and saturation. It also analyzes the effects of injection volume, injection rate, hot water temperature, and other factors on the variations in temperature and pressure distribution. The results indicate that selecting the appropriate injection volume, the temperature of hot water, and the injection rate can promote hydrate decomposition and expand the range of heat stimulation reservoir temperature. Reservoir heterogeneity leads to heterogeneity of the hydrate dissociation front and temperature influence range, and the influence range of heat stimulation is larger than homogeneous reservoir.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信