{"title":"使用限制平均生存时间回归的个体参与者数据的时间到事件终点的网络元分析","authors":"Kaiyuan Hua, Xiaofei Wang, Hwanhee Hong","doi":"10.1002/bimj.70037","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Network meta-analysis (NMA) extends pairwise meta-analysis to compare multiple treatments simultaneously by combining “direct” and “indirect” comparisons of treatments. The availability of individual participant data (IPD) makes it possible to evaluate treatment effect moderation and to draw inferences about treatment effects by taking the full utilization of individual covariates from multiple clinical trials. In IPD-NMA, restricted mean survival time (RMST) models have gained popularity when analyzing time-to-event outcomes because RMST models offer more straightforward interpretations of treatment effects with fewer assumptions than hazard ratios commonly estimated from Cox models. Existing approaches estimate RMST within each study and then combine by using aggregate-level NMA methods. However, these methods cannot incorporate individual covariates to evaluate the effect moderation. In this paper, we propose advanced RMST NMA models when IPD are available. Our models allow us to study treatment effect moderation and provide a comprehensive understanding about comparative effectiveness of treatments and subgroup effects. The methods are evaluated by an extensive simulation study and illustrated using a real NMA example about treatments for patients with atrial fibrillation.</p></div>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Meta-Analysis of Time-to-Event Endpoints With Individual Participant Data Using Restricted Mean Survival Time Regression\",\"authors\":\"Kaiyuan Hua, Xiaofei Wang, Hwanhee Hong\",\"doi\":\"10.1002/bimj.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Network meta-analysis (NMA) extends pairwise meta-analysis to compare multiple treatments simultaneously by combining “direct” and “indirect” comparisons of treatments. The availability of individual participant data (IPD) makes it possible to evaluate treatment effect moderation and to draw inferences about treatment effects by taking the full utilization of individual covariates from multiple clinical trials. In IPD-NMA, restricted mean survival time (RMST) models have gained popularity when analyzing time-to-event outcomes because RMST models offer more straightforward interpretations of treatment effects with fewer assumptions than hazard ratios commonly estimated from Cox models. Existing approaches estimate RMST within each study and then combine by using aggregate-level NMA methods. However, these methods cannot incorporate individual covariates to evaluate the effect moderation. In this paper, we propose advanced RMST NMA models when IPD are available. Our models allow us to study treatment effect moderation and provide a comprehensive understanding about comparative effectiveness of treatments and subgroup effects. The methods are evaluated by an extensive simulation study and illustrated using a real NMA example about treatments for patients with atrial fibrillation.</p></div>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70037\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Network Meta-Analysis of Time-to-Event Endpoints With Individual Participant Data Using Restricted Mean Survival Time Regression
Network meta-analysis (NMA) extends pairwise meta-analysis to compare multiple treatments simultaneously by combining “direct” and “indirect” comparisons of treatments. The availability of individual participant data (IPD) makes it possible to evaluate treatment effect moderation and to draw inferences about treatment effects by taking the full utilization of individual covariates from multiple clinical trials. In IPD-NMA, restricted mean survival time (RMST) models have gained popularity when analyzing time-to-event outcomes because RMST models offer more straightforward interpretations of treatment effects with fewer assumptions than hazard ratios commonly estimated from Cox models. Existing approaches estimate RMST within each study and then combine by using aggregate-level NMA methods. However, these methods cannot incorporate individual covariates to evaluate the effect moderation. In this paper, we propose advanced RMST NMA models when IPD are available. Our models allow us to study treatment effect moderation and provide a comprehensive understanding about comparative effectiveness of treatments and subgroup effects. The methods are evaluated by an extensive simulation study and illustrated using a real NMA example about treatments for patients with atrial fibrillation.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.