基于合作惩罚回归的竞争事件高维变量选择

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Lukas Burk, Andreas Bender, Marvin N. Wright
{"title":"基于合作惩罚回归的竞争事件高维变量选择","authors":"Lukas Burk,&nbsp;Andreas Bender,&nbsp;Marvin N. Wright","doi":"10.1002/bimj.70036","DOIUrl":null,"url":null,"abstract":"<p>Variable selection is an important step in the analysis of high-dimensional data, yet there are limited options for survival outcomes in the presence of competing risks. Commonly employed penalized Cox regression considers each event type separately through cause-specific models, neglecting possibly shared information between them. We adapt the feature-weighted elastic net (fwelnet), an elastic net generalization, to survival outcomes and competing risks. For two causes, our proposed algorithm fits two alternating cause-specific models, where each model receives the coefficient vector of the complementary model as prior information. We dub this “cooperative penalized regression,” as it enables the modeling of competing risk data with cause-specific models while accounting for shared effects between causes. Coefficients that are shrunken toward zero in the model for the first cause will receive larger penalization weights in the model for the second cause and vice versa. Through multiple iterations, this process ensures stronger penalization of uninformative predictors in both models. We demonstrate our method's variable selection capabilities on simulated genomics data and apply it to bladder cancer microarray data. We evaluate selection performance using the positive predictive value for the correct selection of informative features and the false positive rate for the selection of uninformative variables. The benchmark compares results with cause-specific penalized Cox regression, random survival forests, and likelihood-boosted Cox regression. Results indicate that our approach is more effective at selecting informative features and removing uninformative features. In settings without shared effects, variable selection performance is similar to cause-specific penalized Cox regression.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70036","citationCount":"0","resultStr":"{\"title\":\"High-Dimensional Variable Selection With Competing Events Using Cooperative Penalized Regression\",\"authors\":\"Lukas Burk,&nbsp;Andreas Bender,&nbsp;Marvin N. Wright\",\"doi\":\"10.1002/bimj.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variable selection is an important step in the analysis of high-dimensional data, yet there are limited options for survival outcomes in the presence of competing risks. Commonly employed penalized Cox regression considers each event type separately through cause-specific models, neglecting possibly shared information between them. We adapt the feature-weighted elastic net (fwelnet), an elastic net generalization, to survival outcomes and competing risks. For two causes, our proposed algorithm fits two alternating cause-specific models, where each model receives the coefficient vector of the complementary model as prior information. We dub this “cooperative penalized regression,” as it enables the modeling of competing risk data with cause-specific models while accounting for shared effects between causes. Coefficients that are shrunken toward zero in the model for the first cause will receive larger penalization weights in the model for the second cause and vice versa. Through multiple iterations, this process ensures stronger penalization of uninformative predictors in both models. We demonstrate our method's variable selection capabilities on simulated genomics data and apply it to bladder cancer microarray data. We evaluate selection performance using the positive predictive value for the correct selection of informative features and the false positive rate for the selection of uninformative variables. The benchmark compares results with cause-specific penalized Cox regression, random survival forests, and likelihood-boosted Cox regression. Results indicate that our approach is more effective at selecting informative features and removing uninformative features. In settings without shared effects, variable selection performance is similar to cause-specific penalized Cox regression.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70036\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70036","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

变量选择是高维数据分析中的一个重要步骤,但在存在竞争风险的情况下,生存结果的选择有限。常用的惩罚Cox回归通过特定原因模型分别考虑每种事件类型,忽略了它们之间可能共享的信息。我们将特征加权弹性网(fwelnet),一种弹性网泛化,应用于生存结果和竞争风险。对于两个原因,我们提出的算法拟合两个交替的原因特定模型,其中每个模型接收互补模型的系数向量作为先验信息。我们称之为“合作惩罚回归”,因为它可以用特定原因的模型对竞争风险数据进行建模,同时考虑原因之间的共同影响。对于第一个原因,在模型中向零缩小的系数将在第二个原因的模型中获得更大的惩罚权重,反之亦然。通过多次迭代,该过程确保对两个模型中缺乏信息的预测者进行更强的惩罚。我们在模拟基因组数据上展示了我们的方法的变量选择能力,并将其应用于膀胱癌微阵列数据。我们使用正确选择信息特征的正预测值和选择非信息变量的假阳性率来评估选择性能。该基准将结果与特定原因的惩罚性Cox回归、随机生存森林和可能性增强的Cox回归进行比较。结果表明,我们的方法在选择信息特征和去除非信息特征方面更有效。在没有共享效应的情况下,变量选择性能类似于特定原因的惩罚Cox回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Dimensional Variable Selection With Competing Events Using Cooperative Penalized Regression

High-Dimensional Variable Selection With Competing Events Using Cooperative Penalized Regression

Variable selection is an important step in the analysis of high-dimensional data, yet there are limited options for survival outcomes in the presence of competing risks. Commonly employed penalized Cox regression considers each event type separately through cause-specific models, neglecting possibly shared information between them. We adapt the feature-weighted elastic net (fwelnet), an elastic net generalization, to survival outcomes and competing risks. For two causes, our proposed algorithm fits two alternating cause-specific models, where each model receives the coefficient vector of the complementary model as prior information. We dub this “cooperative penalized regression,” as it enables the modeling of competing risk data with cause-specific models while accounting for shared effects between causes. Coefficients that are shrunken toward zero in the model for the first cause will receive larger penalization weights in the model for the second cause and vice versa. Through multiple iterations, this process ensures stronger penalization of uninformative predictors in both models. We demonstrate our method's variable selection capabilities on simulated genomics data and apply it to bladder cancer microarray data. We evaluate selection performance using the positive predictive value for the correct selection of informative features and the false positive rate for the selection of uninformative variables. The benchmark compares results with cause-specific penalized Cox regression, random survival forests, and likelihood-boosted Cox regression. Results indicate that our approach is more effective at selecting informative features and removing uninformative features. In settings without shared effects, variable selection performance is similar to cause-specific penalized Cox regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信