Maximilian Wörner, Ursel Hornung, Selhan Karagöz, Thomas Zevaco, Nicolaus Dahmen
{"title":"重点介绍了山毛榉木、碱木质素和黑液水热液化生产的水炭","authors":"Maximilian Wörner, Ursel Hornung, Selhan Karagöz, Thomas Zevaco, Nicolaus Dahmen","doi":"10.1007/s00107-025-02214-2","DOIUrl":null,"url":null,"abstract":"<div><p>Previous studies on the hydrothermal liquefaction (HTL) of biomass have primarily focused on bio-oil production, overlooking the significant hydrochar by-product. In this work, the HTL of beech wood, soda lignin, and black liquor was performed at temperatures of 300 °C and 350 °C for 20 min. The effect of temperature and biomass type on hydrochar yields and properties was thoroughly investigated. The mass yields of the hydrochars varied between 25.92 wt% and 32.70 wt%. An increase in temperature from 300 °C to 350 °C led to a decrease in hydrochar mass yields. The carbon yield was found to be highest (51 wt%) at 300 °C using beech wood. The highest heating value, 30.97 MJ/kg, was obtained with hydrochar derived from soda lignin at 300 °C. Solid-state carbon NMR demonstrated that the hydrochars derived from black liquor contain condensed aromatic structures. Both the type of biomass and temperature significantly influenced the characteristics of the resulting hydrochar. This research demonstrates that hydrochar holds promise as a solid biofuel due to its advantageous energy content and carbon yield, highlighting its potential for sustainable energy applications.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-025-02214-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Focus on hydrochars produced from hydrothermal liquefaction of beech wood, soda lignin and black liquor\",\"authors\":\"Maximilian Wörner, Ursel Hornung, Selhan Karagöz, Thomas Zevaco, Nicolaus Dahmen\",\"doi\":\"10.1007/s00107-025-02214-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previous studies on the hydrothermal liquefaction (HTL) of biomass have primarily focused on bio-oil production, overlooking the significant hydrochar by-product. In this work, the HTL of beech wood, soda lignin, and black liquor was performed at temperatures of 300 °C and 350 °C for 20 min. The effect of temperature and biomass type on hydrochar yields and properties was thoroughly investigated. The mass yields of the hydrochars varied between 25.92 wt% and 32.70 wt%. An increase in temperature from 300 °C to 350 °C led to a decrease in hydrochar mass yields. The carbon yield was found to be highest (51 wt%) at 300 °C using beech wood. The highest heating value, 30.97 MJ/kg, was obtained with hydrochar derived from soda lignin at 300 °C. Solid-state carbon NMR demonstrated that the hydrochars derived from black liquor contain condensed aromatic structures. Both the type of biomass and temperature significantly influenced the characteristics of the resulting hydrochar. This research demonstrates that hydrochar holds promise as a solid biofuel due to its advantageous energy content and carbon yield, highlighting its potential for sustainable energy applications.</p></div>\",\"PeriodicalId\":550,\"journal\":{\"name\":\"European Journal of Wood and Wood Products\",\"volume\":\"83 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00107-025-02214-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Wood and Wood Products\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00107-025-02214-2\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02214-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Focus on hydrochars produced from hydrothermal liquefaction of beech wood, soda lignin and black liquor
Previous studies on the hydrothermal liquefaction (HTL) of biomass have primarily focused on bio-oil production, overlooking the significant hydrochar by-product. In this work, the HTL of beech wood, soda lignin, and black liquor was performed at temperatures of 300 °C and 350 °C for 20 min. The effect of temperature and biomass type on hydrochar yields and properties was thoroughly investigated. The mass yields of the hydrochars varied between 25.92 wt% and 32.70 wt%. An increase in temperature from 300 °C to 350 °C led to a decrease in hydrochar mass yields. The carbon yield was found to be highest (51 wt%) at 300 °C using beech wood. The highest heating value, 30.97 MJ/kg, was obtained with hydrochar derived from soda lignin at 300 °C. Solid-state carbon NMR demonstrated that the hydrochars derived from black liquor contain condensed aromatic structures. Both the type of biomass and temperature significantly influenced the characteristics of the resulting hydrochar. This research demonstrates that hydrochar holds promise as a solid biofuel due to its advantageous energy content and carbon yield, highlighting its potential for sustainable energy applications.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.