巽他陆架海泥炭源陆源溶解有机碳的可降解性和再矿化作用

IF 2 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Yuan Chen, Moritz Müller, Alexander R. Cobb, Rahayu Sukmaria Sukri, Jens Zinke, R. Nagarajan, R. Sharveen, Abdulmajid Muhammad Ali, Patrick Martin
{"title":"巽他陆架海泥炭源陆源溶解有机碳的可降解性和再矿化作用","authors":"Yuan Chen,&nbsp;Moritz Müller,&nbsp;Alexander R. Cobb,&nbsp;Rahayu Sukmaria Sukri,&nbsp;Jens Zinke,&nbsp;R. Nagarajan,&nbsp;R. Sharveen,&nbsp;Abdulmajid Muhammad Ali,&nbsp;Patrick Martin","doi":"10.1007/s00027-025-01170-6","DOIUrl":null,"url":null,"abstract":"<div><p>The remineralization of terrestrial dissolved organic carbon (tDOC) plays an important role in coastal carbon and nutrient cycling, and can affect primary productivity and seawater pH. However, the fate of tDOC in the ocean remains poorly understood. Southeast Asia’s Sunda Shelf Sea receives around 10% of global tDOC input from peatland-draining rivers. Here, we performed photodegradation and long-term (2 months to 1.5 years) biodegradation experiments with samples from peatland-draining rivers and from peat tDOC-rich coastal water. We used the resulting photochemical and microbial decay rates to parameterize a 1-dimensional model simulation. This indicates that 24% and 23% of the initial tDOC entering the Sunda Shelf can be remineralized by pure photo- and pure biodegradation, respectively, after 2 years (which represents an upper limit of seawater residence time on the Sunda Shelf). We also show for the first time that the biodegradation rate of Southeast Asian peat tDOC is enhanced by prior photodegradation. Adding photo-enhanced biodegradation to our model simulation causes remineralization of an additional 16% of the initial tDOC. However, the contribution of photo-enhanced biodegradation was likely underestimated because the photo- and biodegradation steps were conducted successively in our experiments. Overall, our results suggest a notably higher contribution of photodegradation compared with other regions, owing to the combination of slow biodegradation, high solar irradiance, long water residence time on the shelf, and the photo-enhancement of the biodegradation rate. Our results are important for informing tDOC modeling studies, and highlight a need for further research on interactive photo–biodegradation of tDOC.</p></div>","PeriodicalId":55489,"journal":{"name":"Aquatic Sciences","volume":"87 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradability and remineralization of peat-derived terrestrial dissolved organic carbon in the Sunda Shelf Sea\",\"authors\":\"Yuan Chen,&nbsp;Moritz Müller,&nbsp;Alexander R. Cobb,&nbsp;Rahayu Sukmaria Sukri,&nbsp;Jens Zinke,&nbsp;R. Nagarajan,&nbsp;R. Sharveen,&nbsp;Abdulmajid Muhammad Ali,&nbsp;Patrick Martin\",\"doi\":\"10.1007/s00027-025-01170-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The remineralization of terrestrial dissolved organic carbon (tDOC) plays an important role in coastal carbon and nutrient cycling, and can affect primary productivity and seawater pH. However, the fate of tDOC in the ocean remains poorly understood. Southeast Asia’s Sunda Shelf Sea receives around 10% of global tDOC input from peatland-draining rivers. Here, we performed photodegradation and long-term (2 months to 1.5 years) biodegradation experiments with samples from peatland-draining rivers and from peat tDOC-rich coastal water. We used the resulting photochemical and microbial decay rates to parameterize a 1-dimensional model simulation. This indicates that 24% and 23% of the initial tDOC entering the Sunda Shelf can be remineralized by pure photo- and pure biodegradation, respectively, after 2 years (which represents an upper limit of seawater residence time on the Sunda Shelf). We also show for the first time that the biodegradation rate of Southeast Asian peat tDOC is enhanced by prior photodegradation. Adding photo-enhanced biodegradation to our model simulation causes remineralization of an additional 16% of the initial tDOC. However, the contribution of photo-enhanced biodegradation was likely underestimated because the photo- and biodegradation steps were conducted successively in our experiments. Overall, our results suggest a notably higher contribution of photodegradation compared with other regions, owing to the combination of slow biodegradation, high solar irradiance, long water residence time on the shelf, and the photo-enhancement of the biodegradation rate. Our results are important for informing tDOC modeling studies, and highlight a need for further research on interactive photo–biodegradation of tDOC.</p></div>\",\"PeriodicalId\":55489,\"journal\":{\"name\":\"Aquatic Sciences\",\"volume\":\"87 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00027-025-01170-6\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00027-025-01170-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

陆地溶解有机碳(tDOC)的再矿化作用在海岸带碳和养分循环中起着重要作用,并能影响初级生产力和海水ph。然而,海洋中tDOC的命运尚不清楚。东南亚巽他大陆架海从泥炭地排水的河流中吸收了全球约10%的tDOC。在这里,我们进行了光降解和长期(2个月至1.5年)的生物降解实验,样品来自泥炭地排水河流和富含泥炭tdoc的沿海水域。我们使用由此产生的光化学和微生物衰变率来参数化一维模型模拟。这表明,进入巽他大陆架的初始tDOC中,有24%和23%在2年后分别可以通过纯光降解和纯生物降解进行再矿化(这是海水在巽他大陆架停留时间的上限)。我们还首次证明了东南亚泥炭tDOC的生物降解率被事先的光降解所提高。在我们的模型模拟中加入光增强生物降解会使初始tDOC的再矿化率增加16%。然而,光增强生物降解的作用可能被低估了,因为在我们的实验中,光和生物降解步骤是先后进行的。总的来说,我们的研究结果表明,由于生物降解速度慢、太阳辐照度高、在货架上停留时间长以及光增强生物降解率,与其他地区相比,光降解的贡献明显更高。我们的研究结果对tDOC的建模研究具有重要意义,并强调了进一步研究tDOC光-生物相互作用降解的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Degradability and remineralization of peat-derived terrestrial dissolved organic carbon in the Sunda Shelf Sea

Degradability and remineralization of peat-derived terrestrial dissolved organic carbon in the Sunda Shelf Sea

The remineralization of terrestrial dissolved organic carbon (tDOC) plays an important role in coastal carbon and nutrient cycling, and can affect primary productivity and seawater pH. However, the fate of tDOC in the ocean remains poorly understood. Southeast Asia’s Sunda Shelf Sea receives around 10% of global tDOC input from peatland-draining rivers. Here, we performed photodegradation and long-term (2 months to 1.5 years) biodegradation experiments with samples from peatland-draining rivers and from peat tDOC-rich coastal water. We used the resulting photochemical and microbial decay rates to parameterize a 1-dimensional model simulation. This indicates that 24% and 23% of the initial tDOC entering the Sunda Shelf can be remineralized by pure photo- and pure biodegradation, respectively, after 2 years (which represents an upper limit of seawater residence time on the Sunda Shelf). We also show for the first time that the biodegradation rate of Southeast Asian peat tDOC is enhanced by prior photodegradation. Adding photo-enhanced biodegradation to our model simulation causes remineralization of an additional 16% of the initial tDOC. However, the contribution of photo-enhanced biodegradation was likely underestimated because the photo- and biodegradation steps were conducted successively in our experiments. Overall, our results suggest a notably higher contribution of photodegradation compared with other regions, owing to the combination of slow biodegradation, high solar irradiance, long water residence time on the shelf, and the photo-enhancement of the biodegradation rate. Our results are important for informing tDOC modeling studies, and highlight a need for further research on interactive photo–biodegradation of tDOC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Sciences
Aquatic Sciences 环境科学-海洋与淡水生物学
CiteScore
3.90
自引率
4.20%
发文量
60
审稿时长
1 months
期刊介绍: Aquatic Sciences – Research Across Boundaries publishes original research, overviews, and reviews dealing with aquatic systems (both freshwater and marine systems) and their boundaries, including the impact of human activities on these systems. The coverage ranges from molecular-level mechanistic studies to investigations at the whole ecosystem scale. Aquatic Sciences publishes articles presenting research across disciplinary and environmental boundaries, including studies examining interactions among geological, microbial, biological, chemical, physical, hydrological, and societal processes, as well as studies assessing land-water, air-water, benthic-pelagic, river-ocean, lentic-lotic, and groundwater-surface water interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信