{"title":"认证加密密码ACORN-Like的线性伪造攻击","authors":"Yunqiang Li;Ting Cui","doi":"10.23919/cje.2023.00.016","DOIUrl":null,"url":null,"abstract":"The authenticated encryption stream cipher ACORN is one of the finalists of the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) and is intended for lightweight applications. Because of structural weaknesses in the state update function of ACORN, we can introduce a linear function to analyze conditions and differential trails of the state collision and present a linear method to construct forgery messages under the condition that the key and initialization vector are known or the register state at a certain time is known. The attack method is suitable for three versions of ACORN and may be also extended to any ACORN-like, of which the linear feedback shift register (LFSR) can be replaced by other LFSRs and the feedback function can be replaced by other nonlinear functions. For continuous <tex>$l(l > 293)$</tex> bits of new input data, we can construct <tex>$2^{l-294}$</tex> forgery messages for any given message of ACORN. Using a standard personal computer, a concrete forgery message can be constructed almost instantly and the required central processing unit time and memory are equivalent to the required resources for solving a system of 293 linear equations over the binary field. These attacks in this paper make that the sender and receiver may easily cheat each other, which is not a desirable property for an ideal cipher and casts some doubt on the necessary authentication security requirements of ACORN.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 1","pages":"257-265"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891972","citationCount":"0","resultStr":"{\"title\":\"Linear Forgery Attacks on the Authenticated Encryption Cipher ACORN-Like\",\"authors\":\"Yunqiang Li;Ting Cui\",\"doi\":\"10.23919/cje.2023.00.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authenticated encryption stream cipher ACORN is one of the finalists of the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) and is intended for lightweight applications. Because of structural weaknesses in the state update function of ACORN, we can introduce a linear function to analyze conditions and differential trails of the state collision and present a linear method to construct forgery messages under the condition that the key and initialization vector are known or the register state at a certain time is known. The attack method is suitable for three versions of ACORN and may be also extended to any ACORN-like, of which the linear feedback shift register (LFSR) can be replaced by other LFSRs and the feedback function can be replaced by other nonlinear functions. For continuous <tex>$l(l > 293)$</tex> bits of new input data, we can construct <tex>$2^{l-294}$</tex> forgery messages for any given message of ACORN. Using a standard personal computer, a concrete forgery message can be constructed almost instantly and the required central processing unit time and memory are equivalent to the required resources for solving a system of 293 linear equations over the binary field. These attacks in this paper make that the sender and receiver may easily cheat each other, which is not a desirable property for an ideal cipher and casts some doubt on the necessary authentication security requirements of ACORN.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"34 1\",\"pages\":\"257-265\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891972\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891972/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891972/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Linear Forgery Attacks on the Authenticated Encryption Cipher ACORN-Like
The authenticated encryption stream cipher ACORN is one of the finalists of the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) and is intended for lightweight applications. Because of structural weaknesses in the state update function of ACORN, we can introduce a linear function to analyze conditions and differential trails of the state collision and present a linear method to construct forgery messages under the condition that the key and initialization vector are known or the register state at a certain time is known. The attack method is suitable for three versions of ACORN and may be also extended to any ACORN-like, of which the linear feedback shift register (LFSR) can be replaced by other LFSRs and the feedback function can be replaced by other nonlinear functions. For continuous $l(l > 293)$ bits of new input data, we can construct $2^{l-294}$ forgery messages for any given message of ACORN. Using a standard personal computer, a concrete forgery message can be constructed almost instantly and the required central processing unit time and memory are equivalent to the required resources for solving a system of 293 linear equations over the binary field. These attacks in this paper make that the sender and receiver may easily cheat each other, which is not a desirable property for an ideal cipher and casts some doubt on the necessary authentication security requirements of ACORN.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.