新颖的可持续绿色运输:考虑物流中各种因素的中性多目标模型

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kalaivani Kaspar, Palanivel K.
{"title":"新颖的可持续绿色运输:考虑物流中各种因素的中性多目标模型","authors":"Kalaivani Kaspar,&nbsp;Palanivel K.","doi":"10.1016/j.suscom.2025.101096","DOIUrl":null,"url":null,"abstract":"<div><div>Growing environmental concerns are driving the logistics operations in industry towards sustainable practices, known as green logistics. Optimizing transportation for solid goods are facing challenges to handle complex issues, though traditional methods are often focusing only on single objective like minimizing cost or maximizing the profit. However, to overcome all the possible challenges based on recent requirements, the multi-objective solid transportation problems (MOSTPs) will handle effectively by considering environmental factors like carbon emissions alongside cost and travel time. This research study contributes to the development of robust and eco-friendly transportation solutions by providing a framework for handling uncertainties in MOSTPs. Further, the model influenced in the neutrosophic set (NS) theory, which is an emerging tool to address inherent uncertainties in real-world data associated with environmental impacts and resource limitations. The NS theory incorporates truth-membership, indeterminacy, and falsity-membership functions, allowing for effective modeling of ambiguity. This model presents a Multi-Objective Fixed Charge Solid Transportation Problem (MOFCSTP) using a bi-polar single-valued neutrosophic set to handle all these uncertainties related to green sustainable transportation. Further, different approaches for achieving optimal solutions are explored, including Neutrosophic Compromise Programming Approach (NCPA), M-Pareto Optimal Solution Approach (M-POSA), Weighted Sum Method (WSM), Neutrosophic Goal Programming (NGP), Neutrosophic Global Criterion Method (NGCM), and Fuzzy Goal Programming (FGP). Lastly, the obtained results are then discussed and compared with sensitivity analysis, which is conducted to evaluate the strengths and limitations of each method to justify the effectiveness of the model.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101096"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel sustainable green transportation: A neutrosophic multi-objective model considering various factors in logistics\",\"authors\":\"Kalaivani Kaspar,&nbsp;Palanivel K.\",\"doi\":\"10.1016/j.suscom.2025.101096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Growing environmental concerns are driving the logistics operations in industry towards sustainable practices, known as green logistics. Optimizing transportation for solid goods are facing challenges to handle complex issues, though traditional methods are often focusing only on single objective like minimizing cost or maximizing the profit. However, to overcome all the possible challenges based on recent requirements, the multi-objective solid transportation problems (MOSTPs) will handle effectively by considering environmental factors like carbon emissions alongside cost and travel time. This research study contributes to the development of robust and eco-friendly transportation solutions by providing a framework for handling uncertainties in MOSTPs. Further, the model influenced in the neutrosophic set (NS) theory, which is an emerging tool to address inherent uncertainties in real-world data associated with environmental impacts and resource limitations. The NS theory incorporates truth-membership, indeterminacy, and falsity-membership functions, allowing for effective modeling of ambiguity. This model presents a Multi-Objective Fixed Charge Solid Transportation Problem (MOFCSTP) using a bi-polar single-valued neutrosophic set to handle all these uncertainties related to green sustainable transportation. Further, different approaches for achieving optimal solutions are explored, including Neutrosophic Compromise Programming Approach (NCPA), M-Pareto Optimal Solution Approach (M-POSA), Weighted Sum Method (WSM), Neutrosophic Goal Programming (NGP), Neutrosophic Global Criterion Method (NGCM), and Fuzzy Goal Programming (FGP). Lastly, the obtained results are then discussed and compared with sensitivity analysis, which is conducted to evaluate the strengths and limitations of each method to justify the effectiveness of the model.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"46 \",\"pages\":\"Article 101096\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925000162\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000162","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel sustainable green transportation: A neutrosophic multi-objective model considering various factors in logistics
Growing environmental concerns are driving the logistics operations in industry towards sustainable practices, known as green logistics. Optimizing transportation for solid goods are facing challenges to handle complex issues, though traditional methods are often focusing only on single objective like minimizing cost or maximizing the profit. However, to overcome all the possible challenges based on recent requirements, the multi-objective solid transportation problems (MOSTPs) will handle effectively by considering environmental factors like carbon emissions alongside cost and travel time. This research study contributes to the development of robust and eco-friendly transportation solutions by providing a framework for handling uncertainties in MOSTPs. Further, the model influenced in the neutrosophic set (NS) theory, which is an emerging tool to address inherent uncertainties in real-world data associated with environmental impacts and resource limitations. The NS theory incorporates truth-membership, indeterminacy, and falsity-membership functions, allowing for effective modeling of ambiguity. This model presents a Multi-Objective Fixed Charge Solid Transportation Problem (MOFCSTP) using a bi-polar single-valued neutrosophic set to handle all these uncertainties related to green sustainable transportation. Further, different approaches for achieving optimal solutions are explored, including Neutrosophic Compromise Programming Approach (NCPA), M-Pareto Optimal Solution Approach (M-POSA), Weighted Sum Method (WSM), Neutrosophic Goal Programming (NGP), Neutrosophic Global Criterion Method (NGCM), and Fuzzy Goal Programming (FGP). Lastly, the obtained results are then discussed and compared with sensitivity analysis, which is conducted to evaluate the strengths and limitations of each method to justify the effectiveness of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信