图棱镜中的配对-哈密顿性质

IF 0.7 3区 数学 Q2 MATHEMATICS
Marién Abreu , Giuseppe Mazzuoccolo , Federico Romaniello , Jean Paul Zerafa
{"title":"图棱镜中的配对-哈密顿性质","authors":"Marién Abreu ,&nbsp;Giuseppe Mazzuoccolo ,&nbsp;Federico Romaniello ,&nbsp;Jean Paul Zerafa","doi":"10.1016/j.disc.2025.114441","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph of even order, and consider <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> as the complete graph on the same vertex set as <em>G</em>. A perfect matching of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> is called a pairing of <em>G</em>. If for every pairing <em>M</em> of <em>G</em> it is possible to find a perfect matching <em>N</em> of <em>G</em> such that <span><math><mi>M</mi><mo>∪</mo><mi>N</mi></math></span> is a Hamiltonian cycle of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, then <em>G</em> is said to have the Pairing-Hamiltonian property, or PH-property, for short. In 2007, Fink (2007) <span><span>[4]</span></span> proved that for every <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, the <em>d</em>-dimensional hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> has the PH-property, thus proving a conjecture posed by Kreweras in 1996. In this paper we extend Fink's result by proving that given a graph <em>G</em> having the PH-property, the prism graph <span><math><mi>P</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>G</mi><mo>□</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of <em>G</em> has the PH-property as well. Moreover, if <em>G</em> is a connected graph, we show that there exists a positive integer <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that the <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-prism of a graph <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has the PH-property for all <span><math><mi>k</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114441"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Pairing-Hamiltonian property in graph prisms\",\"authors\":\"Marién Abreu ,&nbsp;Giuseppe Mazzuoccolo ,&nbsp;Federico Romaniello ,&nbsp;Jean Paul Zerafa\",\"doi\":\"10.1016/j.disc.2025.114441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a graph of even order, and consider <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> as the complete graph on the same vertex set as <em>G</em>. A perfect matching of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> is called a pairing of <em>G</em>. If for every pairing <em>M</em> of <em>G</em> it is possible to find a perfect matching <em>N</em> of <em>G</em> such that <span><math><mi>M</mi><mo>∪</mo><mi>N</mi></math></span> is a Hamiltonian cycle of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, then <em>G</em> is said to have the Pairing-Hamiltonian property, or PH-property, for short. In 2007, Fink (2007) <span><span>[4]</span></span> proved that for every <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, the <em>d</em>-dimensional hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> has the PH-property, thus proving a conjecture posed by Kreweras in 1996. In this paper we extend Fink's result by proving that given a graph <em>G</em> having the PH-property, the prism graph <span><math><mi>P</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>G</mi><mo>□</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of <em>G</em> has the PH-property as well. Moreover, if <em>G</em> is a connected graph, we show that there exists a positive integer <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that the <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-prism of a graph <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has the PH-property for all <span><math><mi>k</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 6\",\"pages\":\"Article 114441\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000494\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000494","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G为偶阶图,并将KG视为与G在同一顶点集上的完全图。KG的完美匹配称为G的配对。如果对于G的每一个配对M都有可能找到G的完美匹配N使得M∪N是KG的哈密顿循环,那么G就具有配对哈密顿性质,或者简称为ph -性质。2007年,Fink(2007)[4]证明了对于每一个d≥2,d维超立方体Qd具有ph -性质,从而证明了Kreweras在1996年提出的一个猜想。本文推广了Fink的结果,证明了给定图G具有ph -性质,则G的棱镜图P(G)=G□K2也具有ph -性质。此外,如果G是连通图,我们证明了存在一个正整数k0,使得图Pk(G)的第k棱镜对所有k≥k0都具有ph -性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Pairing-Hamiltonian property in graph prisms
Let G be a graph of even order, and consider KG as the complete graph on the same vertex set as G. A perfect matching of KG is called a pairing of G. If for every pairing M of G it is possible to find a perfect matching N of G such that MN is a Hamiltonian cycle of KG, then G is said to have the Pairing-Hamiltonian property, or PH-property, for short. In 2007, Fink (2007) [4] proved that for every d2, the d-dimensional hypercube Qd has the PH-property, thus proving a conjecture posed by Kreweras in 1996. In this paper we extend Fink's result by proving that given a graph G having the PH-property, the prism graph P(G)=GK2 of G has the PH-property as well. Moreover, if G is a connected graph, we show that there exists a positive integer k0 such that the kth-prism of a graph Pk(G) has the PH-property for all kk0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信