可再生能源存储解决方案综述

IF 8 Q1 ENERGY & FUELS
Eduard Enasel, Gheorghe Dumitrascu
{"title":"可再生能源存储解决方案综述","authors":"Eduard Enasel,&nbsp;Gheorghe Dumitrascu","doi":"10.1016/j.nexus.2025.100391","DOIUrl":null,"url":null,"abstract":"<div><div>This review investigates the integration of renewable energy systems with diverse energy storage technologies to enhance reliability and sustainability. Key findings include the high energy density and scalability of lithium-ion and flow batteries, which are crucial for grid-scale applications, despite challenges in cost and raw material availability. Electrical storage methods, such as supercapacitors, provide rapid response capabilities but are limited by low energy density. Mechanical systems, including pumped hydro and compressed air storage, excel in large-scale scenarios but face geographical constraints. Emerging chemical storage technologies, including hydrogen and synthetic natural gas, offer long-term solutions but require advancements in efficiency. Thermal storage systems, such as molten salt and latent heat storage, show significant potential for renewable integration in heating and cooling, although material costs remain a barrier. The integration of hybrid systems demonstrates improved reliability and efficiency, highlighting the necessity of combining technologies to address the intermittent nature of renewable energy. Overall, the findings underscore advancements, challenges, and future research directions required for scalable and sustainable energy storage solutions.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100391"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Storage solutions for renewable energy: A review\",\"authors\":\"Eduard Enasel,&nbsp;Gheorghe Dumitrascu\",\"doi\":\"10.1016/j.nexus.2025.100391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review investigates the integration of renewable energy systems with diverse energy storage technologies to enhance reliability and sustainability. Key findings include the high energy density and scalability of lithium-ion and flow batteries, which are crucial for grid-scale applications, despite challenges in cost and raw material availability. Electrical storage methods, such as supercapacitors, provide rapid response capabilities but are limited by low energy density. Mechanical systems, including pumped hydro and compressed air storage, excel in large-scale scenarios but face geographical constraints. Emerging chemical storage technologies, including hydrogen and synthetic natural gas, offer long-term solutions but require advancements in efficiency. Thermal storage systems, such as molten salt and latent heat storage, show significant potential for renewable integration in heating and cooling, although material costs remain a barrier. The integration of hybrid systems demonstrates improved reliability and efficiency, highlighting the necessity of combining technologies to address the intermittent nature of renewable energy. Overall, the findings underscore advancements, challenges, and future research directions required for scalable and sustainable energy storage solutions.</div></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":\"17 \",\"pages\":\"Article 100391\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427125000324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了可再生能源系统与多种储能技术的集成,以提高可靠性和可持续性。主要发现包括锂离子电池和液流电池的高能量密度和可扩展性,这对于电网规模的应用至关重要,尽管存在成本和原材料可用性方面的挑战。电存储方法,如超级电容器,提供快速响应能力,但受到低能量密度的限制。包括抽水蓄能和压缩空气储存在内的机械系统在大规模场景中表现出色,但面临地理限制。新兴的化学储存技术,包括氢气和合成天然气,提供了长期的解决方案,但需要提高效率。热存储系统,如熔盐和潜热存储,显示出可再生能源在加热和冷却方面的巨大潜力,尽管材料成本仍然是一个障碍。混合系统的集成显示出更高的可靠性和效率,突出了结合技术来解决可再生能源间歇性的必要性。总体而言,研究结果强调了可扩展和可持续能源存储解决方案所需的进步、挑战和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Storage solutions for renewable energy: A review
This review investigates the integration of renewable energy systems with diverse energy storage technologies to enhance reliability and sustainability. Key findings include the high energy density and scalability of lithium-ion and flow batteries, which are crucial for grid-scale applications, despite challenges in cost and raw material availability. Electrical storage methods, such as supercapacitors, provide rapid response capabilities but are limited by low energy density. Mechanical systems, including pumped hydro and compressed air storage, excel in large-scale scenarios but face geographical constraints. Emerging chemical storage technologies, including hydrogen and synthetic natural gas, offer long-term solutions but require advancements in efficiency. Thermal storage systems, such as molten salt and latent heat storage, show significant potential for renewable integration in heating and cooling, although material costs remain a barrier. The integration of hybrid systems demonstrates improved reliability and efficiency, highlighting the necessity of combining technologies to address the intermittent nature of renewable energy. Overall, the findings underscore advancements, challenges, and future research directions required for scalable and sustainable energy storage solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信