舒曼共振作为一种基于南极和北极站长期观测的低电离层和全球雷暴遥感器

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
A.P. Nickolaenko , M. Hayakawa , O. Koloskov
{"title":"舒曼共振作为一种基于南极和北极站长期观测的低电离层和全球雷暴遥感器","authors":"A.P. Nickolaenko ,&nbsp;M. Hayakawa ,&nbsp;O. Koloskov","doi":"10.1016/j.jastp.2025.106465","DOIUrl":null,"url":null,"abstract":"<div><div>We evaluate the impact of solar activity on the global ionosphere and the position of world thunderstorms by analyzing the peak frequency of the first Schumann resonance (SR) mode in the simultaneous records of the horizontal magnetic field components at the high-latitude observatories in the Southern and Northern hemispheres. The long-term monitoring was conducted at the Ukrainian Antarctic Station (UAS) “Akademik Vernadsky” (geographic coordinates: 65.25° S and 64.25° W) and the SOUSY Arctic Svalbard observatory (78.15° N and 16.05° E). A specialized technique was applied to process observational data that exploits the half-sum and semi-difference of the peak frequencies measured simultaneously at these observatories. This approach enables the separation and quantification of the impact of solar activity on the effective height of the lower ionosphere and the distance to the global thunderstorms. The following findings are demonstrated: (i) Alterations in the position of global thunderstorms can be separated from modifications of the lower ionosphere height; (ii) The employment of pivoted vertical profile of the middle atmosphere conductivity indicates that an increase occurs of the upper characteristic height <em>h</em><sub><em>L</em></sub> of the lower ionosphere during the decline in the solar activity. (iii) Kilometer-scale changes in the ionospheric height are linked to variations in the solar activity, and this effect is accompanied by minute (approximately 1° of latitude) displacements of global thunderstorms.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106465"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schumann resonance as a remote sensor of lower ionosphere and global thunderstorms as based on the long-term observations at Antarctic and Arctic stations\",\"authors\":\"A.P. Nickolaenko ,&nbsp;M. Hayakawa ,&nbsp;O. Koloskov\",\"doi\":\"10.1016/j.jastp.2025.106465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We evaluate the impact of solar activity on the global ionosphere and the position of world thunderstorms by analyzing the peak frequency of the first Schumann resonance (SR) mode in the simultaneous records of the horizontal magnetic field components at the high-latitude observatories in the Southern and Northern hemispheres. The long-term monitoring was conducted at the Ukrainian Antarctic Station (UAS) “Akademik Vernadsky” (geographic coordinates: 65.25° S and 64.25° W) and the SOUSY Arctic Svalbard observatory (78.15° N and 16.05° E). A specialized technique was applied to process observational data that exploits the half-sum and semi-difference of the peak frequencies measured simultaneously at these observatories. This approach enables the separation and quantification of the impact of solar activity on the effective height of the lower ionosphere and the distance to the global thunderstorms. The following findings are demonstrated: (i) Alterations in the position of global thunderstorms can be separated from modifications of the lower ionosphere height; (ii) The employment of pivoted vertical profile of the middle atmosphere conductivity indicates that an increase occurs of the upper characteristic height <em>h</em><sub><em>L</em></sub> of the lower ionosphere during the decline in the solar activity. (iii) Kilometer-scale changes in the ionospheric height are linked to variations in the solar activity, and this effect is accompanied by minute (approximately 1° of latitude) displacements of global thunderstorms.</div></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"269 \",\"pages\":\"Article 106465\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682625000495\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682625000495","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过分析南半球和北半球高纬度观测站同步记录的水平磁场分量中第一舒曼共振(SR)模的峰值频率,评价了太阳活动对全球电离层和世界雷暴位置的影响。在乌克兰“维尔纳德斯基”南极站(地理坐标:65.25°S和64.25°W)和SOUSY北极斯瓦尔巴德观测站(78.15°N和16.05°E)进行了长期监测,利用这些观测站同时测量的峰值频率的半和半差,采用了一种专门的技术来处理观测数据。这种方法能够分离和量化太阳活动对较低电离层有效高度和到全球雷暴距离的影响。证明了下列发现:(i)全球雷暴位置的变化可以与电离层下层高度的变化分开;(ii)利用中心大气电导率垂直剖面表明,在太阳活动减弱期间,下部电离层的上层特征高度hL增加。(三)电离层高度的千米尺度变化与太阳活动的变化有关,这种影响伴随着全球雷暴的分钟(大约1°纬度)位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schumann resonance as a remote sensor of lower ionosphere and global thunderstorms as based on the long-term observations at Antarctic and Arctic stations
We evaluate the impact of solar activity on the global ionosphere and the position of world thunderstorms by analyzing the peak frequency of the first Schumann resonance (SR) mode in the simultaneous records of the horizontal magnetic field components at the high-latitude observatories in the Southern and Northern hemispheres. The long-term monitoring was conducted at the Ukrainian Antarctic Station (UAS) “Akademik Vernadsky” (geographic coordinates: 65.25° S and 64.25° W) and the SOUSY Arctic Svalbard observatory (78.15° N and 16.05° E). A specialized technique was applied to process observational data that exploits the half-sum and semi-difference of the peak frequencies measured simultaneously at these observatories. This approach enables the separation and quantification of the impact of solar activity on the effective height of the lower ionosphere and the distance to the global thunderstorms. The following findings are demonstrated: (i) Alterations in the position of global thunderstorms can be separated from modifications of the lower ionosphere height; (ii) The employment of pivoted vertical profile of the middle atmosphere conductivity indicates that an increase occurs of the upper characteristic height hL of the lower ionosphere during the decline in the solar activity. (iii) Kilometer-scale changes in the ionospheric height are linked to variations in the solar activity, and this effect is accompanied by minute (approximately 1° of latitude) displacements of global thunderstorms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信