双改性策略对h-BN/硅橡胶复合材料导热性和热稳定性的协同效应:实验与模拟

IF 6.4 2区 工程技术 Q1 MECHANICS
Wei Yang , Yichao Lin , Yanqi Zhu , Chenxia Zhen , Weihao Tao , Yanlong Luo , Xiujuan Wang
{"title":"双改性策略对h-BN/硅橡胶复合材料导热性和热稳定性的协同效应:实验与模拟","authors":"Wei Yang ,&nbsp;Yichao Lin ,&nbsp;Yanqi Zhu ,&nbsp;Chenxia Zhen ,&nbsp;Weihao Tao ,&nbsp;Yanlong Luo ,&nbsp;Xiujuan Wang","doi":"10.1016/j.icheatmasstransfer.2025.108716","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the effect of the modification strategy of hexagonal boron nitride (h-BN) on the interfacial heat transfer behavior of the composite. Dual modification of h-BN, including covalent and non-covalent modifications, was achieved by combining 6-aminohexanoic acid (ACA)-assisted wet ball milling and tannic acid (TA) surface deposition. Molecular dynamics (MD) simulations show that the interfacial thermal resistance of the covalently modified and the non-covalently modified regions of the composite system is reduced by 19.7 % and 40.9 %, respectively, and the interfacial thermal conductivity is increased by 24.5 % and 88.0 %, respectively. Meanwhile, thermogravimetric analysis demonstrated a 9 °C and 23.7 °C increase in the maximum weight loss temperature of the dual-modified composites compared to that of the two single-modified composites. The synergistic mechanism of the dual modification strategy in improving the interfacial interaction and enhancing the phonon vibration power spectrum of the composites is revealed by MD simulations. This study contributes to a deep understanding of the thermal conductivity mechanism of filled thermal interface materials. It guides the design of modified filler-filled high thermal conductivity rubber-based composites.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"163 ","pages":"Article 108716"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of dual-modification strategy on thermal conductivity and thermal stability of h-BN/silicone rubber composites: Experiments and simulations\",\"authors\":\"Wei Yang ,&nbsp;Yichao Lin ,&nbsp;Yanqi Zhu ,&nbsp;Chenxia Zhen ,&nbsp;Weihao Tao ,&nbsp;Yanlong Luo ,&nbsp;Xiujuan Wang\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.108716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to investigate the effect of the modification strategy of hexagonal boron nitride (h-BN) on the interfacial heat transfer behavior of the composite. Dual modification of h-BN, including covalent and non-covalent modifications, was achieved by combining 6-aminohexanoic acid (ACA)-assisted wet ball milling and tannic acid (TA) surface deposition. Molecular dynamics (MD) simulations show that the interfacial thermal resistance of the covalently modified and the non-covalently modified regions of the composite system is reduced by 19.7 % and 40.9 %, respectively, and the interfacial thermal conductivity is increased by 24.5 % and 88.0 %, respectively. Meanwhile, thermogravimetric analysis demonstrated a 9 °C and 23.7 °C increase in the maximum weight loss temperature of the dual-modified composites compared to that of the two single-modified composites. The synergistic mechanism of the dual modification strategy in improving the interfacial interaction and enhancing the phonon vibration power spectrum of the composites is revealed by MD simulations. This study contributes to a deep understanding of the thermal conductivity mechanism of filled thermal interface materials. It guides the design of modified filler-filled high thermal conductivity rubber-based composites.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"163 \",\"pages\":\"Article 108716\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325001411\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325001411","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨六方氮化硼(h-BN)改性策略对复合材料界面传热行为的影响。通过6-氨基己酸(ACA)辅助湿球磨和单宁酸(TA)表面沉积,实现了h-BN的共价和非共价双重改性。分子动力学(MD)模拟表明,共价修饰区和非共价修饰区的界面热阻分别降低了19.7%和40.9%,界面导热系数分别提高了24.5%和88.0%。同时,热重分析表明,双改性复合材料的最大失重温度比两种单改性复合材料分别提高了9℃和23.7℃。通过MD模拟揭示了双改性策略在改善界面相互作用和增强复合材料声子振动功率谱方面的协同机制。本研究有助于深入理解填充热界面材料的导热机理。对改性填料填充高导热橡胶基复合材料的设计具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic effect of dual-modification strategy on thermal conductivity and thermal stability of h-BN/silicone rubber composites: Experiments and simulations

Synergistic effect of dual-modification strategy on thermal conductivity and thermal stability of h-BN/silicone rubber composites: Experiments and simulations
This study aims to investigate the effect of the modification strategy of hexagonal boron nitride (h-BN) on the interfacial heat transfer behavior of the composite. Dual modification of h-BN, including covalent and non-covalent modifications, was achieved by combining 6-aminohexanoic acid (ACA)-assisted wet ball milling and tannic acid (TA) surface deposition. Molecular dynamics (MD) simulations show that the interfacial thermal resistance of the covalently modified and the non-covalently modified regions of the composite system is reduced by 19.7 % and 40.9 %, respectively, and the interfacial thermal conductivity is increased by 24.5 % and 88.0 %, respectively. Meanwhile, thermogravimetric analysis demonstrated a 9 °C and 23.7 °C increase in the maximum weight loss temperature of the dual-modified composites compared to that of the two single-modified composites. The synergistic mechanism of the dual modification strategy in improving the interfacial interaction and enhancing the phonon vibration power spectrum of the composites is revealed by MD simulations. This study contributes to a deep understanding of the thermal conductivity mechanism of filled thermal interface materials. It guides the design of modified filler-filled high thermal conductivity rubber-based composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信