技术说明:将全谱相关k分布查找表扩展到CH4和NH3,用于燃烧建模

IF 6.4 2区 工程技术 Q1 MECHANICS
Xin Wang , Zheqi Xu , Hongyuan Di , Chaojun Wang
{"title":"技术说明:将全谱相关k分布查找表扩展到CH4和NH3,用于燃烧建模","authors":"Xin Wang ,&nbsp;Zheqi Xu ,&nbsp;Hongyuan Di ,&nbsp;Chaojun Wang","doi":"10.1016/j.icheatmasstransfer.2025.108752","DOIUrl":null,"url":null,"abstract":"<div><div>Due to reliable accuracy and computational efficiency, full-spectrum correlated <em>k</em>-distribution (FSCK) look-up tables (short for traditional FSCK tables) have continuously gained popularities; however, they are only valid for combustion products and intermediates, such as CO<sub>2</sub>, H<sub>2</sub>O, CO and soot. Gas fuels, i.e., CH<sub>4</sub>, NH<sub>3</sub> or their mixture, also display complex spectral or ‘nongray’ behaviors across spectrum. While those gas fuels are commonly consumed during combustion, their spectral behaviors may affect ignition, flame spread and chemical reactions. Therefore, it is necessary to include spectral properties of both CH<sub>4</sub> and NH<sub>3</sub> into FSCK look-up tables. To achieve this, a separate FSCK look-up tables (short for extended FSCK tables) including only CH<sub>4</sub> and NH<sub>3</sub> is constructed in this work. The multiplicative mixing scheme is then used to mix <em>k</em>-distributions from traditional FSCK tables and those from extended FSCK tables. A realistic non-premixed flame is used to validate both efficiency and accuracy of extended FSCK tables as well as multiplicative mixing scheme. Results show that absorption from CH<sub>4</sub> and NH<sub>3</sub> during combustion is strong and cannot be ignored. Results also show that treating spectral properties of CH<sub>4</sub> and NH<sub>3</sub> to be gray may bring in significant errors.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"163 ","pages":"Article 108752"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical note: Extension of full-spectrum correlated k-distribution look-up tables to CH4 and NH3 for use in combustion modelling\",\"authors\":\"Xin Wang ,&nbsp;Zheqi Xu ,&nbsp;Hongyuan Di ,&nbsp;Chaojun Wang\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.108752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to reliable accuracy and computational efficiency, full-spectrum correlated <em>k</em>-distribution (FSCK) look-up tables (short for traditional FSCK tables) have continuously gained popularities; however, they are only valid for combustion products and intermediates, such as CO<sub>2</sub>, H<sub>2</sub>O, CO and soot. Gas fuels, i.e., CH<sub>4</sub>, NH<sub>3</sub> or their mixture, also display complex spectral or ‘nongray’ behaviors across spectrum. While those gas fuels are commonly consumed during combustion, their spectral behaviors may affect ignition, flame spread and chemical reactions. Therefore, it is necessary to include spectral properties of both CH<sub>4</sub> and NH<sub>3</sub> into FSCK look-up tables. To achieve this, a separate FSCK look-up tables (short for extended FSCK tables) including only CH<sub>4</sub> and NH<sub>3</sub> is constructed in this work. The multiplicative mixing scheme is then used to mix <em>k</em>-distributions from traditional FSCK tables and those from extended FSCK tables. A realistic non-premixed flame is used to validate both efficiency and accuracy of extended FSCK tables as well as multiplicative mixing scheme. Results show that absorption from CH<sub>4</sub> and NH<sub>3</sub> during combustion is strong and cannot be ignored. Results also show that treating spectral properties of CH<sub>4</sub> and NH<sub>3</sub> to be gray may bring in significant errors.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"163 \",\"pages\":\"Article 108752\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325001770\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325001770","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

由于可靠的精度和计算效率,全谱相关k分布(FSCK)查找表(传统FSCK表的简称)不断得到普及;然而,它们只适用于燃烧产物和中间体,如CO2、H2O、CO和煤烟。气体燃料,即CH4、NH3或它们的混合物,也显示出复杂的光谱或跨光谱的“非灰色”行为。虽然这些气体燃料通常在燃烧过程中被消耗,但它们的光谱行为可能会影响点火、火焰蔓延和化学反应。因此,有必要在FSCK查找表中同时包含CH4和NH3的光谱性质。为了实现这一点,在本工作中构建了一个单独的FSCK查找表(扩展FSCK表的简称),仅包括CH4和NH3。然后使用乘法混合方案混合来自传统FSCK表和来自扩展FSCK表的k-分布。通过一个真实的非预混火焰,验证了扩展FSCK表和乘法混合方案的效率和准确性。结果表明,燃烧过程中对CH4和NH3的吸收较强,不容忽视。结果还表明,将CH4和NH3的光谱性质处理为灰色会带来明显的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technical note: Extension of full-spectrum correlated k-distribution look-up tables to CH4 and NH3 for use in combustion modelling
Due to reliable accuracy and computational efficiency, full-spectrum correlated k-distribution (FSCK) look-up tables (short for traditional FSCK tables) have continuously gained popularities; however, they are only valid for combustion products and intermediates, such as CO2, H2O, CO and soot. Gas fuels, i.e., CH4, NH3 or their mixture, also display complex spectral or ‘nongray’ behaviors across spectrum. While those gas fuels are commonly consumed during combustion, their spectral behaviors may affect ignition, flame spread and chemical reactions. Therefore, it is necessary to include spectral properties of both CH4 and NH3 into FSCK look-up tables. To achieve this, a separate FSCK look-up tables (short for extended FSCK tables) including only CH4 and NH3 is constructed in this work. The multiplicative mixing scheme is then used to mix k-distributions from traditional FSCK tables and those from extended FSCK tables. A realistic non-premixed flame is used to validate both efficiency and accuracy of extended FSCK tables as well as multiplicative mixing scheme. Results show that absorption from CH4 and NH3 during combustion is strong and cannot be ignored. Results also show that treating spectral properties of CH4 and NH3 to be gray may bring in significant errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信