成对有机电合成中的交织微带电极阵列:可持续性和实用性

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Tingran Liu, Taku Suzuki-Osborne, James E. Taylor, Frank Marken
{"title":"成对有机电合成中的交织微带电极阵列:可持续性和实用性","authors":"Tingran Liu,&nbsp;Taku Suzuki-Osborne,&nbsp;James E. Taylor,&nbsp;Frank Marken","doi":"10.1016/j.coelec.2025.101664","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical synthesis is well established for production of bulk commodities such as copper, aluminium, or ethylene oxide, but electrosynthesis could play an increasingly important role also in a broader range of organic and pharmaceutical syntheses. Electrochemical transformations linked to renewable electricity offer a low-carbon low-waste alternative to traditional chemical reactions (sustainability), although more work is needed to establish processes and reactor technology for easy implementation (practicality). Here, the application of interdigitated microband array electrodes (in conjunction with computational methods) is discussed/contrasted as a tool to (i) avoid the use of added supporting electrolyte, (ii) achieve anode–cathode process pairing, and (iii) allow very simple reactor technology to be introduced compatible with existing chemical reactionware.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101664"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interdigitated microband electrode arrays in paired organic electrosyntheses: Sustainability and practicality\",\"authors\":\"Tingran Liu,&nbsp;Taku Suzuki-Osborne,&nbsp;James E. Taylor,&nbsp;Frank Marken\",\"doi\":\"10.1016/j.coelec.2025.101664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrochemical synthesis is well established for production of bulk commodities such as copper, aluminium, or ethylene oxide, but electrosynthesis could play an increasingly important role also in a broader range of organic and pharmaceutical syntheses. Electrochemical transformations linked to renewable electricity offer a low-carbon low-waste alternative to traditional chemical reactions (sustainability), although more work is needed to establish processes and reactor technology for easy implementation (practicality). Here, the application of interdigitated microband array electrodes (in conjunction with computational methods) is discussed/contrasted as a tool to (i) avoid the use of added supporting electrolyte, (ii) achieve anode–cathode process pairing, and (iii) allow very simple reactor technology to be introduced compatible with existing chemical reactionware.</div></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"50 \",\"pages\":\"Article 101664\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910325000237\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000237","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interdigitated microband electrode arrays in paired organic electrosyntheses: Sustainability and practicality

Interdigitated microband electrode arrays in paired organic electrosyntheses: Sustainability and practicality
Electrochemical synthesis is well established for production of bulk commodities such as copper, aluminium, or ethylene oxide, but electrosynthesis could play an increasingly important role also in a broader range of organic and pharmaceutical syntheses. Electrochemical transformations linked to renewable electricity offer a low-carbon low-waste alternative to traditional chemical reactions (sustainability), although more work is needed to establish processes and reactor technology for easy implementation (practicality). Here, the application of interdigitated microband array electrodes (in conjunction with computational methods) is discussed/contrasted as a tool to (i) avoid the use of added supporting electrolyte, (ii) achieve anode–cathode process pairing, and (iii) allow very simple reactor technology to be introduced compatible with existing chemical reactionware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信