Ti3C2Tx mxen基(钴钒)双金属硫化物0D@2D异质结构复合材料在非对称超级电容器中的应用

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL
Mahmoud Dardeer , Kisan Chhetri , Devendra Shrestha , Rupesh Kandel , Chan Hee Park
{"title":"Ti3C2Tx mxen基(钴钒)双金属硫化物0D@2D异质结构复合材料在非对称超级电容器中的应用","authors":"Mahmoud Dardeer ,&nbsp;Kisan Chhetri ,&nbsp;Devendra Shrestha ,&nbsp;Rupesh Kandel ,&nbsp;Chan Hee Park","doi":"10.1016/j.jelechem.2025.119002","DOIUrl":null,"url":null,"abstract":"<div><div>2D MXenes are receiving a significant attention in the energy-storage sector, owing to their high surface redox reactivity, hydrophilicity, multi-layered sheet structure, and high conductivity. However, MXenes are subjected to sheets restacking which decrease the number of surface-active sites, and thus limits their capacity value. In this work, CoVS<sub>2</sub> NPs are in-situ grown over the Ti<sub>3</sub>C<sub>2</sub>T<em><sub>×</sub></em> nanosheets using a facile hydrothermal technique. The insertion of the nanoparticles can reduce the restacking of the sheets and creating abundant active sites. As a cathode material for the (ASCs) application, the CoVS<sub>2</sub>@MXene hybrid electrode achieves a high specific capacity value of 423 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>, with an outstanding cycling stability of more than 93 % capacity retention after 5000 working cycles. Moreover, the obtained CoVS<sub>2</sub>@MXene//VS<sub>2</sub>@MXene ASC device provides a significant energy density of ∼57.78 W h kg<sup>−1</sup> at 832 W kg<sup>−1</sup> power density, and 90.3 % capacity retention. Such results indicate that the CoVS<sub>2</sub>@MXene hybrid material offers excellent potential for future development of a new MXene-based supercapacitor devices.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"982 ","pages":"Article 119002"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ti3C2Tx MXene-based (Cobalt–Vanadium) bimetallic sulfides 0D@2D heterostructure composite for asymmetric supercapacitor application\",\"authors\":\"Mahmoud Dardeer ,&nbsp;Kisan Chhetri ,&nbsp;Devendra Shrestha ,&nbsp;Rupesh Kandel ,&nbsp;Chan Hee Park\",\"doi\":\"10.1016/j.jelechem.2025.119002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>2D MXenes are receiving a significant attention in the energy-storage sector, owing to their high surface redox reactivity, hydrophilicity, multi-layered sheet structure, and high conductivity. However, MXenes are subjected to sheets restacking which decrease the number of surface-active sites, and thus limits their capacity value. In this work, CoVS<sub>2</sub> NPs are in-situ grown over the Ti<sub>3</sub>C<sub>2</sub>T<em><sub>×</sub></em> nanosheets using a facile hydrothermal technique. The insertion of the nanoparticles can reduce the restacking of the sheets and creating abundant active sites. As a cathode material for the (ASCs) application, the CoVS<sub>2</sub>@MXene hybrid electrode achieves a high specific capacity value of 423 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>, with an outstanding cycling stability of more than 93 % capacity retention after 5000 working cycles. Moreover, the obtained CoVS<sub>2</sub>@MXene//VS<sub>2</sub>@MXene ASC device provides a significant energy density of ∼57.78 W h kg<sup>−1</sup> at 832 W kg<sup>−1</sup> power density, and 90.3 % capacity retention. Such results indicate that the CoVS<sub>2</sub>@MXene hybrid material offers excellent potential for future development of a new MXene-based supercapacitor devices.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"982 \",\"pages\":\"Article 119002\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157266572500075X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157266572500075X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于具有高表面氧化还原反应性、亲水性、多层片状结构和高导电性,2D MXenes在储能领域受到了极大的关注。然而,MXenes受到薄片堆积的影响,这减少了表面活性位点的数量,从而限制了它们的容量值。在这项工作中,利用简单的水热技术在ti3c2tx纳米片上原位生长CoVS2 NPs。纳米颗粒的插入可以减少薄片的重新堆积,并产生丰富的活性位点。作为(ASCs)应用的阴极材料,CoVS2@MXene混合电极在1ag - 1时达到423 mAh g - 1的高比容量值,在5000个工作循环后具有超过93%的循环稳定性。此外,所获得的CoVS2@MXene//VS2@MXene ASC器件在832 W kg - 1功率密度下提供了显著的能量密度为~ 57.78 W h kg - 1,容量保持率为90.3%。这些结果表明CoVS2@MXene混合材料为未来开发新的基于mxene的超级电容器器件提供了极好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ti3C2Tx MXene-based (Cobalt–Vanadium) bimetallic sulfides 0D@2D heterostructure composite for asymmetric supercapacitor application

Ti3C2Tx MXene-based (Cobalt–Vanadium) bimetallic sulfides 0D@2D heterostructure composite for asymmetric supercapacitor application
2D MXenes are receiving a significant attention in the energy-storage sector, owing to their high surface redox reactivity, hydrophilicity, multi-layered sheet structure, and high conductivity. However, MXenes are subjected to sheets restacking which decrease the number of surface-active sites, and thus limits their capacity value. In this work, CoVS2 NPs are in-situ grown over the Ti3C2T× nanosheets using a facile hydrothermal technique. The insertion of the nanoparticles can reduce the restacking of the sheets and creating abundant active sites. As a cathode material for the (ASCs) application, the CoVS2@MXene hybrid electrode achieves a high specific capacity value of 423 mAh g−1 at 1 A g−1, with an outstanding cycling stability of more than 93 % capacity retention after 5000 working cycles. Moreover, the obtained CoVS2@MXene//VS2@MXene ASC device provides a significant energy density of ∼57.78 W h kg−1 at 832 W kg−1 power density, and 90.3 % capacity retention. Such results indicate that the CoVS2@MXene hybrid material offers excellent potential for future development of a new MXene-based supercapacitor devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信