Fang-Yu Tao , Dan Xie , Dan-Hong Wang , Wan-Yue Diao , Chang Liu , Godefroid Gahungu , Xing-Long Wu , Wen-Liang Li , Jing-Ping Zhang
{"title":"通过表面锚定效应定向调节金属钠沉积行为和电极界面结构,实现长寿命、无树枝状突起的金属钠阳极","authors":"Fang-Yu Tao , Dan Xie , Dan-Hong Wang , Wan-Yue Diao , Chang Liu , Godefroid Gahungu , Xing-Long Wu , Wen-Liang Li , Jing-Ping Zhang","doi":"10.1016/j.jpowsour.2025.236523","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium metal batteries (SMBs) fail to meet practical application metrics due to uncontrollable dendrite growth, undesired electrode interfacial side reactions, and infinite volume change during the stripping/plating process. Herein, a triple functional sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene-modified 3D conductive carbon cloth (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC) is elaborately designed to directed-regulation Na metal deposition behavior and electrode interfacial structure, as well as alleviate the volume change during cycling. Initially, the sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene nanosheets exploit their surface anchoring effect to induce Na metal along the surface of nanosheet deposition, thereby suppressing the dendrites growth. Simultaneously, introducing sodiophilic seeds facilitates the formation of stable NaF-rich solid electrolyte interface film on the electrode surface, improving Na deposition dynamics and uniformity. Then, the high specific surface area and open 3D structure of the CC skeleton effectively reduce the local current density and accommodate the Na deposits. Consequently, the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC electrode enables symmetric cells to cycle over 2000 h with a stable overpotential of 21 mV at 4 mA cm<sup>−2</sup>/1 mA h cm<sup>−2</sup>. And the assembled Na-Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC||NVPOF full cells deliver a high capacity of 114.8 mA h g<sup>−1</sup> over 1300 cycles with an excellent capacity retention of 96.4 %, demonstrating the superiority of Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC electrode in the construction of high-performance SMBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"635 ","pages":"Article 236523"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed-regulation sodium metal deposition behavior and electrode interfacial structure via surface anchoring effect enable long-life and dendrite-free sodium metal anode\",\"authors\":\"Fang-Yu Tao , Dan Xie , Dan-Hong Wang , Wan-Yue Diao , Chang Liu , Godefroid Gahungu , Xing-Long Wu , Wen-Liang Li , Jing-Ping Zhang\",\"doi\":\"10.1016/j.jpowsour.2025.236523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sodium metal batteries (SMBs) fail to meet practical application metrics due to uncontrollable dendrite growth, undesired electrode interfacial side reactions, and infinite volume change during the stripping/plating process. Herein, a triple functional sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene-modified 3D conductive carbon cloth (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC) is elaborately designed to directed-regulation Na metal deposition behavior and electrode interfacial structure, as well as alleviate the volume change during cycling. Initially, the sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene nanosheets exploit their surface anchoring effect to induce Na metal along the surface of nanosheet deposition, thereby suppressing the dendrites growth. Simultaneously, introducing sodiophilic seeds facilitates the formation of stable NaF-rich solid electrolyte interface film on the electrode surface, improving Na deposition dynamics and uniformity. Then, the high specific surface area and open 3D structure of the CC skeleton effectively reduce the local current density and accommodate the Na deposits. Consequently, the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC electrode enables symmetric cells to cycle over 2000 h with a stable overpotential of 21 mV at 4 mA cm<sup>−2</sup>/1 mA h cm<sup>−2</sup>. And the assembled Na-Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC||NVPOF full cells deliver a high capacity of 114.8 mA h g<sup>−1</sup> over 1300 cycles with an excellent capacity retention of 96.4 %, demonstrating the superiority of Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC electrode in the construction of high-performance SMBs.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"635 \",\"pages\":\"Article 236523\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325003593\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325003593","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
由于不可控的枝晶生长、不期望的电极界面副反应以及剥离/电镀过程中无限的体积变化,钠金属电池(SMBs)无法满足实际应用指标。本文精心设计了一种三功能亲钠ti3c2tx - mxene修饰的三维导电碳布(Ti3C2Tx-MXene@CC),定向调节Na金属沉积行为和电极界面结构,并减轻循环过程中的体积变化。最初,亲钠Ti3C2Tx-MXene纳米片利用其表面锚定效应诱导Na金属沿纳米片表面沉积,从而抑制枝晶生长。同时,引入亲钠种子有利于在电极表面形成稳定的富钠固体电解质界面膜,改善Na沉积动力学和均匀性。然后,CC骨架的高比表面积和开放的三维结构有效地降低了局部电流密度,并容纳了Na沉积。因此,Ti3C2Tx-MXene@CC电极使对称电池循环超过2000小时,在4 mA cm - 2/1 mA h cm - 2下稳定过电位为21 mV。组装的Na-Ti3C2TX-MXene@CC||NVPOF全电池在1300次循环中提供了114.8 mA h g−1的高容量,容量保持率为96.4%,证明了Ti3C2TX-MXene@CC电极在构建高性能smb中的优势。
Directed-regulation sodium metal deposition behavior and electrode interfacial structure via surface anchoring effect enable long-life and dendrite-free sodium metal anode
Sodium metal batteries (SMBs) fail to meet practical application metrics due to uncontrollable dendrite growth, undesired electrode interfacial side reactions, and infinite volume change during the stripping/plating process. Herein, a triple functional sodiophilic Ti3C2Tx-MXene-modified 3D conductive carbon cloth (Ti3C2Tx-MXene@CC) is elaborately designed to directed-regulation Na metal deposition behavior and electrode interfacial structure, as well as alleviate the volume change during cycling. Initially, the sodiophilic Ti3C2Tx-MXene nanosheets exploit their surface anchoring effect to induce Na metal along the surface of nanosheet deposition, thereby suppressing the dendrites growth. Simultaneously, introducing sodiophilic seeds facilitates the formation of stable NaF-rich solid electrolyte interface film on the electrode surface, improving Na deposition dynamics and uniformity. Then, the high specific surface area and open 3D structure of the CC skeleton effectively reduce the local current density and accommodate the Na deposits. Consequently, the Ti3C2Tx-MXene@CC electrode enables symmetric cells to cycle over 2000 h with a stable overpotential of 21 mV at 4 mA cm−2/1 mA h cm−2. And the assembled Na-Ti3C2TX-MXene@CC||NVPOF full cells deliver a high capacity of 114.8 mA h g−1 over 1300 cycles with an excellent capacity retention of 96.4 %, demonstrating the superiority of Ti3C2TX-MXene@CC electrode in the construction of high-performance SMBs.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems