Fang-Yu Tao , Dan Xie , Dan-Hong Wang , Wan-Yue Diao , Chang Liu , Godefroid Gahungu , Xing-Long Wu , Wen-Liang Li , Jing-Ping Zhang
{"title":"通过表面锚定效应定向调节金属钠沉积行为和电极界面结构,实现长寿命、无树枝状突起的金属钠阳极","authors":"Fang-Yu Tao , Dan Xie , Dan-Hong Wang , Wan-Yue Diao , Chang Liu , Godefroid Gahungu , Xing-Long Wu , Wen-Liang Li , Jing-Ping Zhang","doi":"10.1016/j.jpowsour.2025.236523","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium metal batteries (SMBs) fail to meet practical application metrics due to uncontrollable dendrite growth, undesired electrode interfacial side reactions, and infinite volume change during the stripping/plating process. Herein, a triple functional sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene-modified 3D conductive carbon cloth (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC) is elaborately designed to directed-regulation Na metal deposition behavior and electrode interfacial structure, as well as alleviate the volume change during cycling. Initially, the sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene nanosheets exploit their surface anchoring effect to induce Na metal along the surface of nanosheet deposition, thereby suppressing the dendrites growth. Simultaneously, introducing sodiophilic seeds facilitates the formation of stable NaF-rich solid electrolyte interface film on the electrode surface, improving Na deposition dynamics and uniformity. Then, the high specific surface area and open 3D structure of the CC skeleton effectively reduce the local current density and accommodate the Na deposits. Consequently, the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC electrode enables symmetric cells to cycle over 2000 h with a stable overpotential of 21 mV at 4 mA cm<sup>−2</sup>/1 mA h cm<sup>−2</sup>. And the assembled Na-Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC||NVPOF full cells deliver a high capacity of 114.8 mA h g<sup>−1</sup> over 1300 cycles with an excellent capacity retention of 96.4 %, demonstrating the superiority of Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC electrode in the construction of high-performance SMBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"635 ","pages":"Article 236523"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed-regulation sodium metal deposition behavior and electrode interfacial structure via surface anchoring effect enable long-life and dendrite-free sodium metal anode\",\"authors\":\"Fang-Yu Tao , Dan Xie , Dan-Hong Wang , Wan-Yue Diao , Chang Liu , Godefroid Gahungu , Xing-Long Wu , Wen-Liang Li , Jing-Ping Zhang\",\"doi\":\"10.1016/j.jpowsour.2025.236523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sodium metal batteries (SMBs) fail to meet practical application metrics due to uncontrollable dendrite growth, undesired electrode interfacial side reactions, and infinite volume change during the stripping/plating process. Herein, a triple functional sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene-modified 3D conductive carbon cloth (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC) is elaborately designed to directed-regulation Na metal deposition behavior and electrode interfacial structure, as well as alleviate the volume change during cycling. Initially, the sodiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene nanosheets exploit their surface anchoring effect to induce Na metal along the surface of nanosheet deposition, thereby suppressing the dendrites growth. Simultaneously, introducing sodiophilic seeds facilitates the formation of stable NaF-rich solid electrolyte interface film on the electrode surface, improving Na deposition dynamics and uniformity. Then, the high specific surface area and open 3D structure of the CC skeleton effectively reduce the local current density and accommodate the Na deposits. Consequently, the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene@CC electrode enables symmetric cells to cycle over 2000 h with a stable overpotential of 21 mV at 4 mA cm<sup>−2</sup>/1 mA h cm<sup>−2</sup>. And the assembled Na-Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC||NVPOF full cells deliver a high capacity of 114.8 mA h g<sup>−1</sup> over 1300 cycles with an excellent capacity retention of 96.4 %, demonstrating the superiority of Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>-MXene@CC electrode in the construction of high-performance SMBs.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"635 \",\"pages\":\"Article 236523\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325003593\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325003593","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Directed-regulation sodium metal deposition behavior and electrode interfacial structure via surface anchoring effect enable long-life and dendrite-free sodium metal anode
Sodium metal batteries (SMBs) fail to meet practical application metrics due to uncontrollable dendrite growth, undesired electrode interfacial side reactions, and infinite volume change during the stripping/plating process. Herein, a triple functional sodiophilic Ti3C2Tx-MXene-modified 3D conductive carbon cloth (Ti3C2Tx-MXene@CC) is elaborately designed to directed-regulation Na metal deposition behavior and electrode interfacial structure, as well as alleviate the volume change during cycling. Initially, the sodiophilic Ti3C2Tx-MXene nanosheets exploit their surface anchoring effect to induce Na metal along the surface of nanosheet deposition, thereby suppressing the dendrites growth. Simultaneously, introducing sodiophilic seeds facilitates the formation of stable NaF-rich solid electrolyte interface film on the electrode surface, improving Na deposition dynamics and uniformity. Then, the high specific surface area and open 3D structure of the CC skeleton effectively reduce the local current density and accommodate the Na deposits. Consequently, the Ti3C2Tx-MXene@CC electrode enables symmetric cells to cycle over 2000 h with a stable overpotential of 21 mV at 4 mA cm−2/1 mA h cm−2. And the assembled Na-Ti3C2TX-MXene@CC||NVPOF full cells deliver a high capacity of 114.8 mA h g−1 over 1300 cycles with an excellent capacity retention of 96.4 %, demonstrating the superiority of Ti3C2TX-MXene@CC electrode in the construction of high-performance SMBs.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems