通过带折叠获得密集等离子体晶格的超光线色散和高q共振

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nelson de Gaay Fortman, Debapriya Pal, Peter Schall and A. Femius Koenderink*, 
{"title":"通过带折叠获得密集等离子体晶格的超光线色散和高q共振","authors":"Nelson de Gaay Fortman,&nbsp;Debapriya Pal,&nbsp;Peter Schall and A. Femius Koenderink*,&nbsp;","doi":"10.1021/acsphotonics.4c0232310.1021/acsphotonics.4c02323","DOIUrl":null,"url":null,"abstract":"<p >Dense plasmon lattices are promising as experimentally accessible implementations of seminal tight-binding Hamiltonians, but the plasmonic dispersion of interest lies far beyond the light line and is thereby inaccessible in far-field optical experiments. In this work, we make the guided mode dispersion of dense hexagonal plasmon antenna lattices visible by bandfolding induced by perturbative scatterer size modulations that introduce supercell periodicity. We present fluorescence enhancement experiments and reciprocity-based T-matrix simulations for a systematic variation of perturbation strength. We evidence that folding the <i>K</i>-point into the light cone gives rise to a narrow plasmon mode, achieving among the highest reported quality factors for plasmon lattice resonances in the visible wavelength range despite a doubled areal density of plasmon antennas. We finally show <i>K</i>-point lasing and spontaneous symmetry breaking between the bandfolded <i>K</i>- and <i>K</i>′-modes, signifying that intrinsic symmetry properties of the dense plasmon lattice are maintained and can be observed upon band folding.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 2","pages":"1163–1173 1163–1173"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphotonics.4c02323","citationCount":"0","resultStr":"{\"title\":\"Accessing Beyond-Light Line Dispersion and High-Q Resonances of Dense Plasmon Lattices by Bandfolding\",\"authors\":\"Nelson de Gaay Fortman,&nbsp;Debapriya Pal,&nbsp;Peter Schall and A. Femius Koenderink*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.4c0232310.1021/acsphotonics.4c02323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dense plasmon lattices are promising as experimentally accessible implementations of seminal tight-binding Hamiltonians, but the plasmonic dispersion of interest lies far beyond the light line and is thereby inaccessible in far-field optical experiments. In this work, we make the guided mode dispersion of dense hexagonal plasmon antenna lattices visible by bandfolding induced by perturbative scatterer size modulations that introduce supercell periodicity. We present fluorescence enhancement experiments and reciprocity-based T-matrix simulations for a systematic variation of perturbation strength. We evidence that folding the <i>K</i>-point into the light cone gives rise to a narrow plasmon mode, achieving among the highest reported quality factors for plasmon lattice resonances in the visible wavelength range despite a doubled areal density of plasmon antennas. We finally show <i>K</i>-point lasing and spontaneous symmetry breaking between the bandfolded <i>K</i>- and <i>K</i>′-modes, signifying that intrinsic symmetry properties of the dense plasmon lattice are maintained and can be observed upon band folding.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 2\",\"pages\":\"1163–1173 1163–1173\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphotonics.4c02323\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.4c02323\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c02323","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

密集的等离子体晶格有望作为种子紧密结合哈密顿子的实验实现,但感兴趣的等离子体色散远在光线之外,因此在远场光学实验中是不可接近的。在这项工作中,我们通过引入超级单体周期性的微扰散射体尺寸调制引起的带折叠,使密集六边形等离子体天线晶格的导模色散可见。我们提出了荧光增强实验和基于往复的t矩阵模拟系统变化的扰动强度。我们证明,将k点折叠到光锥中会产生一个狭窄的等离子体模式,尽管等离子体天线的面密度增加了一倍,但在可见波长范围内实现了等离子体晶格共振的最高质量因子。我们最后展示了K点激光和自发对称性破缺在带折叠K-和K '模式之间,这表明密集等离子体晶格的固有对称性得到维持,并且可以在带折叠时观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accessing Beyond-Light Line Dispersion and High-Q Resonances of Dense Plasmon Lattices by Bandfolding

Dense plasmon lattices are promising as experimentally accessible implementations of seminal tight-binding Hamiltonians, but the plasmonic dispersion of interest lies far beyond the light line and is thereby inaccessible in far-field optical experiments. In this work, we make the guided mode dispersion of dense hexagonal plasmon antenna lattices visible by bandfolding induced by perturbative scatterer size modulations that introduce supercell periodicity. We present fluorescence enhancement experiments and reciprocity-based T-matrix simulations for a systematic variation of perturbation strength. We evidence that folding the K-point into the light cone gives rise to a narrow plasmon mode, achieving among the highest reported quality factors for plasmon lattice resonances in the visible wavelength range despite a doubled areal density of plasmon antennas. We finally show K-point lasing and spontaneous symmetry breaking between the bandfolded K- and K′-modes, signifying that intrinsic symmetry properties of the dense plasmon lattice are maintained and can be observed upon band folding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信