激子扩散对二维钙钛矿中Mn掺杂发射效率的影响

IF 6.3 Q2 NANOSCIENCE & NANOTECHNOLOGY
Alvaro J. Magdaleno, Anuraj S. Kshirsagar, Marc Meléndez, Udara M. Kuruppu, Jesse J. Suurmond, Mercy M. Cutler, Michel Frising, Michael Seitz, Rafael Delgado-Buscalioni, Mahesh K. Gangishetty* and Ferry Prins*, 
{"title":"激子扩散对二维钙钛矿中Mn掺杂发射效率的影响","authors":"Alvaro J. Magdaleno,&nbsp;Anuraj S. Kshirsagar,&nbsp;Marc Meléndez,&nbsp;Udara M. Kuruppu,&nbsp;Jesse J. Suurmond,&nbsp;Mercy M. Cutler,&nbsp;Michel Frising,&nbsp;Michael Seitz,&nbsp;Rafael Delgado-Buscalioni,&nbsp;Mahesh K. Gangishetty* and Ferry Prins*,&nbsp;","doi":"10.1021/acsnanoscienceau.4c0004710.1021/acsnanoscienceau.4c00047","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) metal-halide perovskites have promising characteristics for optoelectronic applications. By incorporating Mn<sup>2+</sup> ions into the perovskite structure, improved photoluminescence quantum yield can be achieved. This has been attributed to the formation of defect states that act as efficient recombination centers. Here, we make use of transient photoluminescence microscopy to characterize important material parameters of Mn<sup>2+</sup>-doped 2D perovskites with different doping levels. From these measurements, we visualize the importance of exciton transport as an intermediate step in the excitation of Mn<sup>2+</sup>. We model the spatiotemporal dynamics of the excited states to extract the diffusion constant and the transfer rate of the excitations to the Mn dopant sites. Interestingly, from these models, we find that the average distance an exciton needs to travel before transferring to a Mn site is significantly larger than expected from the Mn concentration obtained from elemental analysis. These insights are critical from a device design perspective.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 1","pages":"29–36 29–36"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00047","citationCount":"0","resultStr":"{\"title\":\"Role of Exciton Diffusion in the Efficiency of Mn Dopant Emission in Two-Dimensional Perovskites\",\"authors\":\"Alvaro J. Magdaleno,&nbsp;Anuraj S. Kshirsagar,&nbsp;Marc Meléndez,&nbsp;Udara M. Kuruppu,&nbsp;Jesse J. Suurmond,&nbsp;Mercy M. Cutler,&nbsp;Michel Frising,&nbsp;Michael Seitz,&nbsp;Rafael Delgado-Buscalioni,&nbsp;Mahesh K. Gangishetty* and Ferry Prins*,&nbsp;\",\"doi\":\"10.1021/acsnanoscienceau.4c0004710.1021/acsnanoscienceau.4c00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) metal-halide perovskites have promising characteristics for optoelectronic applications. By incorporating Mn<sup>2+</sup> ions into the perovskite structure, improved photoluminescence quantum yield can be achieved. This has been attributed to the formation of defect states that act as efficient recombination centers. Here, we make use of transient photoluminescence microscopy to characterize important material parameters of Mn<sup>2+</sup>-doped 2D perovskites with different doping levels. From these measurements, we visualize the importance of exciton transport as an intermediate step in the excitation of Mn<sup>2+</sup>. We model the spatiotemporal dynamics of the excited states to extract the diffusion constant and the transfer rate of the excitations to the Mn dopant sites. Interestingly, from these models, we find that the average distance an exciton needs to travel before transferring to a Mn site is significantly larger than expected from the Mn concentration obtained from elemental analysis. These insights are critical from a device design perspective.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"5 1\",\"pages\":\"29–36 29–36\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)金属卤化物钙钛矿具有很好的光电应用特性。通过在钙钛矿结构中加入Mn2+离子,可以提高光致发光量子产率。这归因于缺陷态的形成,缺陷态作为有效的重组中心。在这里,我们利用瞬态光致发光显微镜来表征不同掺杂水平掺杂Mn2+的二维钙钛矿的重要材料参数。从这些测量中,我们看到了激子输运作为Mn2+激发的中间步骤的重要性。我们建立了激发态的时空动力学模型,以提取扩散常数和激发到Mn掺杂点的转移速率。有趣的是,从这些模型中,我们发现激子在转移到Mn位点之前需要移动的平均距离明显大于从元素分析中得到的Mn浓度的预期。从设备设计的角度来看,这些见解至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Exciton Diffusion in the Efficiency of Mn Dopant Emission in Two-Dimensional Perovskites

Two-dimensional (2D) metal-halide perovskites have promising characteristics for optoelectronic applications. By incorporating Mn2+ ions into the perovskite structure, improved photoluminescence quantum yield can be achieved. This has been attributed to the formation of defect states that act as efficient recombination centers. Here, we make use of transient photoluminescence microscopy to characterize important material parameters of Mn2+-doped 2D perovskites with different doping levels. From these measurements, we visualize the importance of exciton transport as an intermediate step in the excitation of Mn2+. We model the spatiotemporal dynamics of the excited states to extract the diffusion constant and the transfer rate of the excitations to the Mn dopant sites. Interestingly, from these models, we find that the average distance an exciton needs to travel before transferring to a Mn site is significantly larger than expected from the Mn concentration obtained from elemental analysis. These insights are critical from a device design perspective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信